Chapter 9: Distributed Systems

Chapter 9: Distributed Systems

- Advantages of Distributed Systems
- Network Structure
- Communication Protocols
- Network and Distributed Operating Systems
- Design Issues of Distributed Systems

Chapter Objectives

- Explain the advantages of networked and distributed systems
- Define the roles and types of distributed systems in use today

Overview

- A distributed system is a collection of loosely coupled nodes interconnected by a communications network
- Nodes variously called processors, computers, machines, hosts
 - Site is location of the machine, node refers to specific system
 - Generally a server has a resource a client node at a different site wants to use

Overview (cont.)

- Nodes may exist in a *client-server*, *peer-to-peer*, or *hybrid* configuration.
 - In client-server configuration, server has a resource that a client would like to use
 - In peer-to-peer configuration, each node shares equal responsibilities and can act as both clients and servers
- Communication over a network occurs through message passing
 - All higher-level functions of a standalone system can be expanded to encompass a distributed system

Reasons for Distributed Systems

Resource sharing

- Sharing files or printing at remote sites
- Processing information in a distributed database
- Using remote specialized hardware devices such as graphics processing units (GPUs)
- Computation speedup
 - Distribute subcomputations among various sites to run concurrently
 - Load balancing moving jobs to more lightly-loaded sites
- Reliability
 - Detect and recover from site failure, function transfer, reintegrate failed site

Network Structure

- Local-Area Network (LAN) designed to cover small geographical area
 - Consists of multiple computers (workstations, laptops, mobile devices), peripherals (printers, storage arrays), and routers providing access to other networks
 - Ethernet and/or Wireless (WiFi) most common way to construct LANs
 - Ethernet defined by standard IEEE 802.3 with speeds typically varying from 10Mbps to over 10Gbps
 - WiFi defined by standard IEEE 802.11 with speeds typically varying from 11Mbps to over 400Mbps.
 - Both standards constantly evolving

Local-Area Network (LAN)

Network Structure (Cont.)

- Wide-Area Network (WAN) links geographically separated sites
 - Point-to-point connections via links
 - Telephone lines, leased (dedicated data) lines, optical cable, microwave links, radio waves, and satellite channels
 - Implemented via routers to direct traffic from one network to another
 - Internet (World Wide Web) WAN enables hosts world wide to communicate
 - Speeds vary
 - Many backbone providers have speeds at 40-100Gbps
 - Local Internet Service Providers (ISPs) may be slower
 - WAN links constantly being upgraded
 - WANs and LANs interconnect, similar to cell phone network:
 - Cell phones use radio waves to cell towers
 - Towers connect to other towers and hubs

Wide-Area Network (WAN)

Naming and Name Resolution

- Each computer system in the network has a unique name
- Each process in a given system has a unique name (process-id)
- Identify processes on remote systems by
 - <host-name, identifier> pair
- Domain name system (DNS) specifies the naming structure of the hosts, as well as name to address resolution (Internet)

```
/**
 * Usage: java DNSLookUp <IP name>
 * i.e. java DNSLookUp www.wiley.com
 */
public class DNSLookUp {
   public static void main(String[] args) {
      InetAddress hostAddress;

      try {
        hostAddress = InetAddress.getByName(args[0]);
        System.out.println(hostAddress.getHostAddress());
      }
      catch (UnknownHostException uhe) {
        System.err.println("Unknown host: " + args[0]);
      }
   }
}
```

Figure 19.4 Java program illustrating a DNS lookup.

Communication Protocol

- Communication via OSI model (7 Layers)
- Transport Protocols:
 - TCP (Transmission Control Protocol)
 - Reliable and Connection-oriented
 - UDP (User Datagram Protocol)
 - Unreliable and Connectionless

Network-oriented Operating Systems

- Two main types
- Network Operating Systems
 - Users are aware of multiplicity of machines
- Distributed Operating Systems
 - Users not aware of multiplicity of machines

multiplicity: ความมากมายหลากหลายรูปแบบ

Network Operating Systems

- Users are aware of multiplicity of machines
- Access to resources of various machines is done explicitly by:
 - Remote logging into the appropriate remote machine (ssh)
 - ▶ ssh kristen.cs.yale.edu
 - Transferring data from remote machines to local machines,
 via the File Transfer Protocol (FTP) mechanism
 - Upload, download, access, or share files through cloud storage
- Users must change paradigms establish a session, give network-based commands, use a web browser
 - More difficult for users

Distributed Operating Systems

- Users not aware of multiplicity of machines
 - Access to remote resources similar to access to local resources
- Data Migration transfer data by transferring entire file, or transferring only those portions of the file necessary for the immediate task
- Computation Migration transfer the computation, rather than the data, across the system
 - Via remote procedure calls (RPCs)
 - Via messaging system

migration : การเคลื่อนย้ายจากที่หนึ่งไปยังอีกที่หนึ่ง

Distributed-Operating Systems (Cont.)

- Process Migration execute an entire process, or parts of it, at different sites
 - Load balancing distribute processes across network to even the workload
 - Computation speedup subprocesses can run concurrently on different sites
 - Hardware preference process execution may require specialized processor
 - Software preference required software may be available at only a particular site
 - Data access run process remotely, rather than transfer all data locally
- Consider the World Wide Web

- We investigate three design questions:
 - Robustness Can the distributed system withstand failures?
 - Transparency Can the distributed system be transparent to the user both in terms of where files are stored and user mobility?
 - Scalability Can the distributed system be scalable to allow addition of more computation power, storage, or users?

Robustness

- Hardware failures can include failure of a link, failure of a site, and loss of a message.
- A fault-tolerant system can tolerate a certain level of failure
 - Degree of fault tolerance depends on design of system and the specific fault
 - The more fault tolerance, the better!
- Involves failure detection, reconfiguration, and recovery

Failure Detection

- Detecting hardware failure is difficult
- To detect a link failure, a heartbeat protocol can be used
- Assume Site A and Site B have established a link
 - At fixed intervals, each site will exchange an *I-am-up* message indicating that they are up and running
- If Site A does not receive a message within the fixed interval, it assumes either (a) the other site is not up or (b) the message was lost
- Site A can now send an Are-you-up? message to Site B
- If Site A does not receive a reply, it can repeat the message or try an alternate route to Site B

Failure Detection (Cont.)

- If Site A does not ultimately receive a reply from Site B, it concludes some type of failure has occurred
- Types of failures:
 - Site B is down
 - The direct link between A and B is down
 - The alternate link from A to B is down
 - The message has been lost
- However, Site A cannot determine exactly why the failure has occurred

Reconfiguration and Recovery

- When Site A determines a failure has occurred, it must reconfigure the system:
 - If the link from A to B has failed, this must be broadcast to every site in the system
 - If a site has failed, every other site must also be notified indicating that the services offered by the failed site are no longer available
- When the link or the site becomes available again, this information must again be broadcast to all other sites

Transparency

- The distributed system should appear as a conventional, centralized system to the user
 - User interface should not distinguish between local and remote resources
 - Example: NFS
 - User mobility allows users to log into any machine in the environment and see his/her environment
 - Example: LDAP plus desktop virtualization

Scalability

- As demands increase, the system should easily accept the addition of new resources to accommodate the increased demand
 - Reacts gracefully to increased load
 - Adding more resources may generate additional indirect load on other resources if not careful
 - Data compression or deduplication can cut down on storage and network resources used

End of Chapter 9

