
1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Memory Management

7.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Paging

 Implementation of the Page Table

 Segmentation

7.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 To provide a detailed description of various ways of
organizing memory hardware

 To discuss various memory-management techniques,
including paging and segmentation

7.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Main memory and registers are only storage CPU can access
directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

brought : ถูกนาํพา

7.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

+

420940

7.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages

 Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes

 Load time: Must generate relocatable code if memory
location is not known at compile time

 Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers)

Binding: การกาํหนดค่า

1 2

3 4

5 6

2

7.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multistep Processing of a User Program

7.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

 Logical address – generated by the CPU; also referred to
as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

7.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent to
memory

 The user program deals with logical addresses; it never sees the
real physical addresses

Logical Address

7.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic relocation using a relocation register

7.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle
infrequently occurring cases

 No special support from the operating system is required
implemented through program design

Routine: โปรแกรมย่อย

7.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-resident
library routine

 Stub replaces itself with the address of the routine, and executes the routine

 Operating system needed to check if routine is in processes’ memory
address

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

7 8

9 10

11 12

3

7.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping
 A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images

 Roll out, roll in – swapping variant used for priority-based scheduling algorithms;
lower-priority process is swapped out so higher-priority process can be loaded
and executed

 Major part of swap time is transferring time; total transfering time is directly
proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes which have memory
images on disk

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and
Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below threshold

7.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic View of Swapping

or Roll-out

or Roll-in

7.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with
interrupt vector (โปรแกรมของระบบปฏิบติัการเอง)

 User processes then held in high memory

 Relocation registers used to protect user processes from each
other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each
logical address must be less than the limit register

 MMU maps logical address dynamically

(การจัดสรรพืÊนทีÉทีÉติดกนั)

contiguous : ติดกนั

7.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Support for Relocation and Limit Registers

7.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Allocation (Cont)
 Multiple-partition allocation (การจดัสรรเนื Ŗอทีŕแบบหลายส่วน)

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered
throughout memory

 When a process arrives, it is allocated memory from a hole large
enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

อาจใชก้ารจดั Schedule แบบ FCFS

7.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough (หาพื Ŗนทีŕทีŕใหญ่กว่าหรอื
เท่ากบั)

 Best-fit: Allocate the smallest hole that is big enough; must search entire
list, unless ordered by size (หาพื Ŗนทีŕทีŕใกลเ้คยีงทีŕสดุ)

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list (หาพื Ŗนทีŕทีŕ
ใหญ่ทีŕสดุกอ่น)

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

13 14

15 16

17 18

4

7.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fragmentation
 External Fragmentation – total memory space exists to satisfy a

request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in
one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

compaction: การบีบอดั

satisfy: ตอบสนอง

shuffle:สับเปลีÉยน
7.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging

 Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

 Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 16 Mbytes)

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames
and load program

 Set up a page table to translate logical to physical addresses

 Still have Internal fragmentation

7.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

7.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Hardware

Page number Page Offset

base Address

7.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Model of Logical and Physical Memory
Index of page number

สังเกต ตวัเลขจะเริÉมทีÉค่า 0 เสมอ

7.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Example

0

1

2

3

Frame number

0

1

2

3

4

5

6

7

Page number

• Logical address: n = 2 and m = 4. Using a page size of 4 bytes and a physical memory
of 32 bytes (8 pages)

19 20

21 22

23 24

5

7.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free Frames

Before allocation After allocation

4 Pages

เรียงตามลําดับ

Free-frame
ทีÉว่าง

7.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice: Free Frames

Before allocation After allocation

15
18
13
20

15
18
13
20
14

7.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory
accesses. One for the page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory or
translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB
entry – uniquely identifies each process to provide address-space
protection for that process

 TLBs typically small (64 to 1,024 entries)

7.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Associative Memory

 Associative memory – parallel search

Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #

หมายถึง ตวัเลข (number)

7.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Hardware With TLB

hit : page number found in the TLB
miss : page number not in the TLB

7.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Protection

 Memory protection implemented by associating protection bit
with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel

25 26

27 28

29 30

6

7.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid (v) or Invalid (i) Bit In A Page Table

valid: มีอยู่อา้งถึงใชง้านได้

invalid: ไม่มีอยู่อา้งถึงใชง้านไม่ได้

7.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical
address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

7.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages Example

0

0

0
shared

private

3

7.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice: จงเตมิขอ้มูลในส่วนของ Frame ทีŕสมัพนัธก์บั
 โพรเซสต่างๆ ทีŕทํางานอยู่ในระบบทีŕมกีารใชง้าน Shared Pages ดว้ย

Frame

10

10

10

2

0

9

2

2

0

0

4

5

0

1

2

3

0

1

2

3

0

1

2

3

7.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

(แบ่งเป็นตอน)

7.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User’s View of a Program

31 32

33 34

35 36

7

7.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

7.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses;
each table entry has:

 base – contains the starting physical address where the
segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment
table’s location in memory

 Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

อา้งอิงความเขา้ใจในเรืÉอง paging

7.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0 illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs
at segment level

 Since segments vary in length, memory allocation is a dynamic
storage-allocation problem

 A segmentation example is shown in the following diagram

7.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation Hardware

Segment number

7.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Segmentation

4700+1000

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 7

37 38

39 40

41 42

