Chapter 5: Synchronization

et

J\N
Operating System Concepts — 10 Edition Silberschatz, Galvin and Gagne ©2018
> |
SO H H
2 Objectives
O To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data
O To present both software and hardware solutions of the critical-section
problem
/g
Operating System Concepts — 10 Edition 5.3 Silberschatz, Galvin and Gagne ©2018

()
! Producer
while (true) {
/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)
; /1 do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
}
Operating System Concepts — 10t Edition 5.5 Silberschatz, Galvin and ngnemﬂ?ﬂ‘

ol
277 Chapter 5: Synchronization

Background

The Critical-Section Problem
Peterson’s Solution

Synchronization Hardware
Semaphores

Classic Problems of Synchronization
Synchronization Examples

Ooooooog

7R

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10 Edition 52

Background

0 Concurrent access to shared data may result in data inconsistency

0 Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

O Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer count that keeps track of the number of full buffers. Initially,
count is set to 0. It is incremented by the producer after it produces a
new buffer and is decremented by the consumer after it consumes a
buffer.

7R

Operating System Concepts — 10% Edition 54 Silberschatz, Galvin and Gagne ©2018

4
e
> .|
> Consumer
while (true) {
while (count == 0)
; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
/* consume the item in nextConsumed
}
Operating System Concepts — 10 Edition 5.6 Silberschatz, Galvin and Gaam;m:ﬂ

Race Condition

O count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

0 count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2
0 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register?2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count=16}

S5: consumer execute count = register2 {count = 4}

£
.

‘ interleaving: msunsnadumahauesyamida >

Operating System Concepts — 10t Edition 5.7 Silberschatz, Galvin and Gagne ©2018

Peterson’s Solution

0 Two process solution (ifh3#ildiu 2 process)

0 Assume that the LOAD and STORE instructions are atomic; that is,
cannot be interrupted.

O The two processes share two variables:
0 int turn;
0 Boolean flag[2]

O The variable turn indicates whose turn it is to enter the critical
section.

O The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process P; is ready!

Operating System Concepts — 10t Edition 5.9 Silberschatz, Galvin and Gagne ©2018

N

N e
&t Synchronization Hardware

O Many systems provide hardware support for critical section code
O Uniprocessors — could disable interrupts
0 Currently running code would execute without preemption
0 Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
O Modern machines provide special atomic hardware instructions
» Atomic = non-interruptable
0 Either test memory word and set value
0 Or swap contents of two memory words

Uniprocessor : Tissmsoiiimon

Operating System Concepts — 10™ Edition 5.11 Silberschatz, Galvin and Gagne ©2018

("
“#”Solution to Critical-Section Problem

1. Mutual Exclusion - If process P, is executing in its critical section, then no
other processes can be executing in their critical sections (nmsuatnsan
i)

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the processes that will enter the critical section next cannot be
postponed indefinitely (#mufianii)

3. Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is
granted (soravadwiivouiun)

@ Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the N processes

Critical section: wainga fiofluiiprocess wnsdmunsminislinlzs naounlasidnsmag voiprocess
Ta'lii process sudmindadluiiiil

exist: dulsingeq, e postponed: Jfias
indefinitely : imiven granted:1&sumsoyyiauds

Operating System Concepts — 10% Edition 58

Silberschatz, Galvin and Gagne ©2018

o .
o Algorithm for Process P,
szl $renamilll 2 process mnfu
do {
flagli] = TRUE;
turn = j;

while (flag[j] && turn == j);
critical section
remainder section

} while (TRUE);

i current process
j: other process N

Operating System Concepts — 10% Edition 5.10 Silberschatz, Galvin and Gagne ©2018

.

™

#”Solution to Critical-section Problem Using Locks

critical section

release lock %7,,,,,7,

remainder section
} while (TRUE);

Operating System Concepts — 10" Edition 5.12 Silberschatz, Galvin and Gagne ©2018

g o Semaphore

0 Synchronization tool that does not require busy waiting (‘ligesmsmssenssiiun)
0 Semaphore S - integer variable
0 Two standard operations modify S: wait() and signal()
o Originally called P() and V()
O Less complicated
0 Can only be accessed via two indivisible (atomic) operations 2 msdiunsiiiuSemaphore
o wait (S) {
while S <=0
; Il no-op
S

o signal (S){
S++;

Operating System Concepts — 10t Edition 513

Silberschatz, Galvin and Gagne ©2018

Semaphore Implementation

0 Must guarantee that no two processes can execute wait () and signal ()
on the same semaphore at the same time

O Thus, implementation becomes the critical section problem where the
wait and signal code are placed in the crtical section.

o Could now have busy waiting in critical section implementation
» But implementation code is short
» Little busy waiting if critical section rarely occupied

O Note that applications may spend lots of time in critical sections and
therefore this is not a good solution.

Operating System Concepts — 10t Edition 5.15 Silberschatz, Galvin and Gagne ©2018

V»;,ﬁmaphore Implementation with no Busy waiting (Cont.)

0 Implementation of wait: mvalue owdnaylduaadlifiiuni process

wait(semaphore *S) { / sonos Semaphore
S->value--;

if (S->value < 0) {
add this process to S->list;
block();

}
O Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->list;
wakeup(P);

Operating System Concepts — 10™ Edition 5.17 Silberschatz, Galvin and Gagne ©2018

-
e N
»/Semaphore as General Synchronization Tool

0 Counting semaphore — integer value can range over an unrestricted domain

0 Binary semaphore — integer value can range only between 0
and 1; can be simpler to implement

0 Also known as mutex locks
0 Can implement a counting semaphore S as a binary semaphore
0 Provides mutual exclusion

Semaphore mutex; // initialized to 1 wait (mutex):

do{ while mutex< 0 do no-op;
. / mutex--;
wait (mutex);

/I Critical Section

signal (mutex);

signal (mutex):
mutex++;

/I remainder section
} while (TRUE);

W

Operating System Concepts — 10 Edition 5.14 Silberschatz, Galvin and Gagne ©2018

BN

o
»/Semaphore Implementation with no Busy waiting

0 With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:

0 value (of type integer)
0 pointer to next record in the list

O Two operations:

0 block — place the process invoking the operation on the
appropriate waiting queue. (1 lsoluiadiliiam)

o wakeup —remove one of processes in the waiting queue
and place it in the ready queue. (hosnuniinitosoriam)

Operating System Concepts — 10% Edition 5.16 Silberschatz, Galvin and Gagne ©2018

EN

o
r Deadlock and Starvation

mslé semaphore owiiliaamgmssianlé sl

0 Deadlock — two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

0 Let S and Q be two semaphores initialized to 1

i Py Py
59111 process nile wait (S); wait (Q);
whfida signal fiou wait (Q); wait (S);
Feaeahs wait 18
signal (S); signal (Q);
signal (Q); signal (S);

0 Starvation —indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended

0 Priority Inversion - Scheduling problem when lower-priority process holds a
lock needed by higher-priority process /I"“\‘

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10% Edition 5.18

»

’Classical Problems of Synchronization

0 Bounded-Buffer Problem
O Readers and Writers Problem
0 Dining-Philosophers Problem

Operating System Concepts — 10t Edition 5.19 Silberschatz, Galvin and Gagne ©2018

»

’ Bounded Buffer Problem (Cont.)

v

O The structure of the producer process
do {

/I produce an item in nextp

wait (empty);

wait (mutex);
/I add the item to the buffer

signal (mutex);
++
signal (full);

} while (TRUE);

Operating System Concepts — 10t Edition 521 Silberschatz, Galvin and Gagne ©2018

Readers-Writers Problem

“4doyasauiu gewannsas (Reader) doyasmiuldnaey au

~diou (Writer) 1 au aunsadoudoyald o sranamils Taohidddounisunlddoyasan naz
Hudnansnusiidouog
owilfiFadym Starvation 8w deidu nasdefons
O A data setis shared among a number of concurrent processes
0 Readers - only read the data set; they do not perform any updates
0 Writers —can both read and write

0 Problem — allow multiple readers to read at the same time. Only one
single writer can access the shared data at the same time

/i Hearudnls readcount s |
i

1l

0 Shared Data
0 Data set

0 Semaphore mute:

0 Semaphore wrt initialized to 1
0 Integer readcount initialized to 0

Operating System Concepts — 10t Edition 5.23 Silberschatz, Galvin and Gagne ©2018

Bounded-Buffer Problem

N buffers, each can hold one item
Semaphore mutex initialized to the value 1
Semaphore full initialized to the value 0
Semaphore empty initialized to the value N.

o o o o

Operating System Concepts — 10 Edition 5.20 Silberschatz, Galvin and Gagne ©2018

BN

o
»”" Bounded Buffer Problem (Cont.)

O The structure of the consumer process
ol
wait (full);
wait (mutex);
/I remove an item from buffer to nextc

signal (mutex);
signal (empty); Empty ++

/I consume the item in nextc

} while (TRUE);

Operating System Concepts — 10% Edition 5.22 Silberschatz, Galvin and Gagne ©2018

A

and
“%7/ Readers-Writers Problem (Cont.)

0 The structure of a writer process

91 £ v 9y
- ADIUAULTN HAZAUGANY szdpaldannls

do { wrt ievhlimshannlszanuiuldi
wait (wrt) ; Ao

/I writing is performed

signal (wrt) ;
} while (TRUE);

Operating System Concepts — 10" Edition 5.24 Silberschatz, Galvin and Gagne ©2018

=

-
’ Readers-Writers Problem (Cont.)

O The structure of a reader process

I . o
mnEoUuIINNM 1aum
do { Yoo o o vy
. . / AREUMAININIUDY Ho1UAY
wait (mutex) ; o K
< .
readcount ++ ; n29z500¢ Tasmsasiaaen
if (readcount == 1) dunls mutex
wait (wrt) ;
signal (mutex)
/I reading is performed
wait (mutex) ;
readcount - -;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
} while (TRUE);
Operating System Concepts — 10" Edition 5.25 Silberschatz, Galvin and Gasm? ©2018

ol
*Dining-Philosophers Problem (Cont.)

O The structure of Philosopher i:

P IY)
nauazifoy 19

do { / operation Wait
wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

Taaziioy 19
operation Signal

/I eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]); o1natam
. Deadlock 18 win
/1" think nanuiimdeuiu

) udmduazinondhadhe
} while (TRUE);

wilouiumua

Operating System Concepts — 10t Edition 5.27 Silberschatz, Galvin and Gagne ©2018

Problems with Semaphores

O incorrect use of semaphore operations:
ms1% operationw.:semaphore ihigndos)

0 signal (mutex) wait (mutex) iliflinaquania Mutual exclusion
0 wait (mutex) ...

wait (mutex) ilinaidym Deadlock 1dmsizlifilaslandon

0 Omitting of wait (mutex) or signal (mutex) (or both)

fimsazimoms14 operation wait() vie signal() wierhg Seilinalomsihanes
semaphore hihinnziu

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 5.29

0 Shared data
0 Bowl of rice (data set)
0 Semaphore chopstick [5] initialized to 1

Operating System Concepts — 10 Edition 5.26 Silberschatz, Galvin and Gagne ©2018

BN

=2 Dining-Philosophers Problem (Cont.)

-oiatlym Deadlock 16 winpnauiiandeuiu
udmsuazneuiadamiiounuma

Fsurluieidesmaina Deadlock

* fimlsaapialae 18 imu 4

Ve g e yy sy oy v 2, ,
fmualifaznduazitonldnzRoududhonazsndeatinieg (vazeglu

Critical-Section)

* q9 o o ' v 4 oy P B "oa
IFmsaduiu i WauavanBudieneu $1eua vazldauavg veuam
Aou adhe

= prunatlyn starvation T&mnudluhisanu =

Operating System Concepts — 10% Edition 5.28

Silberschatz, Galvin and Gagne ©2018

»
o
(e . .
r i Synchronization Examples
0 Windows XP
0 Linux
Operating System Concepts — 10 Edition 5.30 Silberschatz, Galvin and Gasné 201;

Windows XP Synchronization

O Uses interrupt masks to protect access to global resources on uniprocessor
systems

O Uses spinlocks on multiprocessor systems

O Also provides dispatcher objects which may act as either mutexes and
semaphores

O Dispatcher objects may also provide events
0 An event acts much like a condition variable

Operating System Concepts — 10t Edition 5.31 Silberschatz, Galvin and Gagne ©2018

End of Chapter 5

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition

33

Linux Synchronization

0 Linux:

0 Prior to kernel Version 2.6, disables interrupts to implement short critical
sections

0 Version 2.6 and later, fully preemptive

0 Linux provides:
0 semaphores

0 spin locks
b
Operating System Concepts — 10" Edition 5.32 Silberschatz, Galvin and Gagne ©2018

