Chapter 5. Synchronization

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

L N

w“-“‘wr\\ 1 .
“%77 Chapter 5: Synchronization

Background

The Critical-Section Problem
Peterson’s Solution

Synchronization Hardware
Semaphores

Classic Problems of Synchronization
Synchronization Examples

OO 0O0OoOooOo O

A
Operating System Concepts — 10t Edition 5.2 Silberschatz, Galvin and Gagne ©2018

557 Objectives

O To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data

O To present both software and hardware solutions of the critical-section
problem

Operating System Concepts — 10t Edition 5.3 Silberschatz, Galvin and Gagne ©2018

. d Background

0 Concurrent access to shared data may result in data inconsistency

0 Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

0 Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer count that keeps track of the number of full buffers. Initially,
count is set to O. It is incremented by the producer after it produces a
new buffer and is decremented by the consumer after it consumes a
buffer.

increment : sy
decrement: aasias

e
=N
194 ”‘v\}

A

Operating System Concepts — 10t Edition 5.4 Silberschatz, Galvin and Gagne ©2018

o Producer

while (true) {

[* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)
; [/ do nothing
buffer [in] = nextProduced,;
in=(in + 1) % BUFFER_SIZE;
count++;

Operating System Concepts — 10t Edition 5.5 Silberschatz, Galvin and Gagne ©2018

o S Consumer

while (true) {
while (count == 0)
; /I do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

[* consume the item in nextConsumed

S

b

Operating System Concepts — 10t Edition 5.6 Silberschatz, Galvin and Gagne ©2018

&/”ﬂm{% -
v & Race Condition

0 count++ could be implemented as

registerl = count
registerl =registerl + 1
count = registerl

0 count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

0 Consider this execution interleaving with “count = 5" initially:

S0: producer execute registerl = count {reqgisterl = 5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register2 = count {reqgister2 = 5}

S3: consumer execute register? = register2 - 1 {register2 = 4}
S4: producer execute count = registerl {count=6}
S5: consumer execute count = register2 {count = 4}

interleaving: msunsnadumamnauvesyamd -

N
ny AN

3 "
A e %!
Ap%\\\
"

“(
%

“ P

Operating System Concepts — 10t Edition 5.7 Silberschatz, Galvin and Gagne ©2018

-

o,

“$7’Solution to Critical-Section Problem

1. Mutual Exclusion - If process P; is executing in its critical section, then no
other processes can be executing in their critical sections (ns¥iuognsox
AL

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the processes that will enter the critical section next cannot be
postponed indefinitely (dmudniin)

3. Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is
granted (samauaNivoULIE)

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the N processes

¥ v
A A

Critical section: wainga fefuiipProcess udazdraunsaimsilsulys wasunlasidalsaie veaprocess

] H Y v Y
Tag'liili Process sudhuineirdoslununi

exist: dulsngod , nveg postponed: iUfas L
indefinitely : limiveu granted:1asumsoyanauda
Operating System Concepts — 10t Edition 5.8 Silberschatz, Galvin and Gagne ©2018

-

h {
b
o ol
W/
~ -

2

.

r & Peterson’s Solution

0 Two process solution (fuisnlétu 2 process)

O Assume that the LOAD and STORE instructions are atomic; that is,
cannot be interrupted.

O The two processes share two variables:
0 int turn;
0 Boolean flag[2]

0 The variable turn indicates whose turn it is to enter the critical
section.

0 The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process P; is ready!

e —

T\ " " \
3 V‘»f; |
y o
/ (4
U ‘E P

Operating System Concepts — 10t Edition 5.9 Silberschatz, Galvin and Gagne ©2018

Algorithm for Process P;

sjalszdn Ui ranamiledl 2 process wniu

critical section

remainder section

} while (TRUE);

I: current process
j: other process

Operating System Concepts — 10t Edition 5.10 Silberschatz, Galvin and Gagne ©2018

™
gr P e

v ai Synchronization Hardware

O Many systems provide hardware support for critical section code
O Uniprocessors — could disable interrupts
0 Currently running code would execute without preemption
0 Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
0 Modern machines provide special atomic hardware instructions
» Atomic = non-interruptable
0 Either test memory word and set value
0 Or swap contents of two memory words

Uniprocessor : Tiswmyeididen

£ ‘\;1 \\;\‘g

a

A48

e —

Operating System Concepts — 10t Edition 5.11 Silberschatz, Galvin and Gagne ©2018

=

L

€

3

éolutlon to Critical-section Problem Using Locks

A09MIa0n

critical section

| release lock | -- Janfon

remainder section
} while (TRUE);

(

Operating System Concepts — 10t Edition 5.12 Silberschatz, Galvin and Gagne ©2018

¥
1,

(g mi
e Semaphore

0 Synchronization tool that does not require busy waiting (lifesmsmssenssiiun)

Semaphore S — integer variable
Two standard operations modify S: wait() and signal()

0 Originally called P() and V()

0 Less complicated
0 Can only be accessed via two indivisible (atomic) operations i 2 nmséuiunismiduSemaphore

0 wait (S) {
while S<=0
; /I no-op

S

0 signal (S) {
S++;

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 5.13

4

“$»’Semaphore as General Synchronization Tool

0 Counting semaphore — integer value can range over an unrestricted domain

0 Binary semaphore — integer value can range only between 0
and 1; can be simpler to implement

0 Also known as mutex locks
0 Can implement a counting semaphore S as a binary semaphore
0 Provides mutual exclusion
Semaphore mutex; // initialized to 1 | walt (mutex):

do { while mutex< 0 do no-op;
) / mutex--;
wait (mutex);

/I Critical Section

signal (mutex): sighal (mutex):

/I remainder section
mutex++;

} while (TRUE):

Operating System Concepts — 10t Edition 5.14 Silberschatz, Galvin and Gagne ©2018

%77 Semaphore Implementation

O Must guarantee that no two processes can execute wait () and signal ()
on the same semaphore at the same time

0 Thus, implementation becomes the critical section problem where the
wait and signal code are placed in the crtical section.

0 Could now have busy waiting in critical section implementation
» But implementation code is short
» Little busy waiting if critical section rarely occupied

O Note that applications may spend lots of time in critical sections and
therefore this is not a good solution.

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 5.15

=

-

*f‘%;,‘rfSemaphore Implementation with no Busy waiting

O With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:

0 value (of type integer)
0 pointer to next record in the list

0 Two operations:
0 block — place the process invoking the operation on the
appropriate waiting queue. (Tvanldseluaads liieu)

0 wakeup — remove one of processes in the waiting queue
and place it in the ready queue. (shesnnnauiieseriiam)

e —

N
ny AN
> I |
A «:S\ %!
> e O
: —/_(/
ll 5
“ P

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 5.16

"Qx

‘n’” Semaphore Implementation with no Busy waiting (Cont.)

\
| &

0 Implementation of wait: ar1value endsaulduaasliiiuiil process

wait(semaphore *S) { / sonos SEmaphore
S->value--;

if (S->value < 0) {
add this process to S->list;
block();

}

0 Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->list;
wakeup(P);

Operating System Concepts — 10t Edition 5.17 Silberschatz, Galvin and Gagne ©2018

™
gr P e

! Deadlock and Starvation

msli semaphore swil#namamsaivula fail

0 Deadlock —two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

0 LetS and Q be two semaphores initialized to 1

, P P,
561ﬁﬁ process Hile wait (S); wait (Q),
M signal nou { wait (Q): wait (S):
99N wait 18
signal (S): signal (Q);
signal (Q); signal (S);

0 Starvation — indefinite blocking. A process may never be removed from the
semaphore gueue in which it is suspended

O Priority Inversion - Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

£ ‘\;1 \\;\‘g

a

A48

e —

Operating System Concepts — 10t Edition 5.18 Silberschatz, Galvin and Gagne ©2018

N

QM

*/Classical Problems of Synchronization

0 Bounded-Buffer Problem
0 Readers and Writers Problem
0 Dining-Philosophers Problem

Operating System Concepts — 10t Edition 5.19

Silberschatz, Galvin and Gagne ©2018

g
r Bounded-Buffer Problem
0 N buffers, each can hold one item
0 Semaphore mutex initialized to the value 1
0 Semaphore full initialized to the value 0
0 Semaphore empty initialized to the value N.

A
Operating System Concepts — 10t Edition 5.20 Silberschatz, Galvin and Gagne ©2018

W'hl i
<

|8

“$*/ Bounded Buffer Problem (Cont.)

0 The structure of the producer process

do {

/[produce an item in nextp

Empty --

wait (empty);
wait (mutex);

/I add the item to the buffer

signal (mutex);

signal (full); =
} while (TRUE);

Operating System Concepts — 10t Edition 5.21

Full ++

Silberschatz, Galvin and Gagne ©2018

4

-~

~$77 Bounded Buffer Problem (Cont.)

0 The structure of the consumer process

dO{ / FU” ==

wait (full):

wait (mutex);
/I remove an item from buffer to nextc

signal (mutex);
signal (empty); « Empty ++

/I consume the item in nextc

} while (TRUE):

Operating System Concepts — 10t Edition 5.22 Silberschatz, Galvin and Gagne ©2018

.o Readers-Writers Problem

-ldeyaiaunu gewamnsneu (Reader) Joyaswnuldnaion au

Y A

Y

Ao e v itouog

onlwdadam Starvation 1ans dsfideu nazdadery

aweu (Writer) 1 au ennsodloudoyald s srwnamile Tagliligiieuauduunlddoyasy wag

O A data set is shared among a number of concurrent processes

0 Readers — only read the data set; they do not perform any updates

0 Writers — can both read and write

O Problem — allow multiple readers to read at the same time. Only one
single writer can access the shared data at the same time

0 Shared Data
0 Data set

0 Semaphore mutex initialized to 1
1 Semaphore wrt initialized to 1
0

testudunls readcount o)

/

DINUAIVYU

Integer readcount initialized to O

Operating System Concepts — 10t Edition

5.23

Silberschatz, Galvin and Gagne ©2018

fml@ _
~$7’ Readers-Writers Problem (Cont.)

0 The structure of a writer process

Y 1) v IR
- WOTUAULITD LAZAUTANEY A9 A3

do { wrt wevldmsiaudszaunuldny
wait (wrt) ; Ay

/[writing is performed

signal (wrt) ;
} while (TRUE);

N\
; ,\v\.\”}u

1S

sl A%

Operating System Concepts — 10t Edition 5.24 Silberschatz, Galvin and Gagne ©2018

: =
& 3

%7/ Readers-Writers Problem (Cont.)

0 The structure of a reader process

Y = 1 Y
WINADIUNUINNI 1 AU 01
dO{ 9 A o @ o T 9
. .) AIUYUNTIAININIUDY WDITUAU
wait (mutex) ; < Y v
= 1
readcount ++ ; N292500Y Tagn13n3I 1980
if (readcount == 1) auls mutex
wait (wrt) ;

signal (mutex)
/Il reading is performed

wait (mutex) ;
readcount - -;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
} while (TRUE);

A
Operating System Concepts — 10t Edition 5.25 Silberschatz, Galvin and Gagne ©2018

0 Shared data

0 Bowl of rice (data set)
0 Semaphore chopstick [5] initialized to 1

Operating System Concepts — 10t Edition 5.26 Silberschatz, Galvin and Gagne ©2018

“%7Dining-Philosophers Problem (Cont.)

0 The structure of Philosopher i:

A = 9
veuaziney 1o

do { / operation Wait

wait (chopstick[i]);
wait (chopStick|[(i + 1) % 5]);

= 9
1M9azine af

/Il eat : :
/ operation Signal

signal (chopstick][i]);

signal (chopstick[(i + 1) % 5]); p1anatan
| Deadlock 14 v
I think NAAUTHINTOUY

9 Aa = 9 9
| LaIMEUAINYUT19EY
p while (TRUE): Mo uUNUNA

e

o ——

A
Operating System Concepts — 10t Edition 5.27 Silberschatz, Galvin and Gagne ©2018

BL N

-
‘*v’ Dining-Philosophers Problem (Cont.)

2 Y a Y Y
-onmnatlyw Deadlock 14 VINNNAUNINTOUNY
udmiguazineuteEemiloununue

Wud lunedesmsine Deadlock
* Thindsweielae 18 linu 4
o 9 a = 9) ~ 9 9 9 1 g}J 1 1
* Mrua IMagrduaziney lanziNsumusouazydo1119nes (vazoglu
Critical-Section)
* q¥ v ') A a9) Y 1 A
lemsaauni i InaueyangusIenou 1199 LAY IMALEYY HEUYN

' Yy Y
noU UNYIY

= granatlyw Starvation lawnudlulisany =

e —

AV‘S:;\\
P e/
<
7 1S

Operating System Concepts — 10t Edition 5.28 Silberschatz, Galvin and Gagne ©2018

4
Y,

“%7/ Problems with Semaphores

O incorrect use of semaphore operations:
msl¥ operationvessemaphore iligndes)

0 signal (mutex) wait (mutex) ilWhiRequainia Mutual exclusion
0 wait (mutex) ... wait (mutex) shldinedyw Deadlock 1dmsielifilasilaaden

0 Omitting of wait (mutex) or signal (mutex) (or both)

fimsaziaens 14 operation wait() wie signal() wievas suiilinalnmsmanves
semaphore iz

Operating System Concepts — 10t Edition 5.29 Silberschatz, Galvin and Gagne ©2018

‘*'*%;'{ Synchronization Examples

| Q¢

O Windows XP
O Linux

=

Operating System Concepts — 10t Edition 5.30 Silberschatz, Galvin and Gagne ©2018

¥
1,

p—

\

“%77 Windows XP Synchronization

O Uses interrupt masks to protect access to global resources on uniprocessor
systems

0 Uses spinlocks on multiprocessor systems

O Also provides dispatcher objects which may act as either mutexes and
semaphores

0 Dispatcher objects may also provide events
0 An event acts much like a condition variable

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 5.31

v:,,w Linux Synchronization

O Linux;

0 Prior to kernel Version 2.6, disables interrupts to implement short critical
sections

0 Version 2.6 and later, fully preemptive

O Linux provides:
0 semaphores
0 spin locks

Operating System Concepts — 10t Edition 5.32 Silberschatz, Galvin and Gagne ©2018

End of Chapter 5

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

