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Objectives

O Describe various CPU scheduling algorithms

O Assess CPU scheduling algorithms based on scheduling criteria

O Explain the issues related to multiprocessor and multicore
scheduling

O Describe the scheduling algorithm used in the Windows operating
system

0 Apply modeling and simulations to evaluate CPU scheduling
algorithms
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e Basic Concepts
0 Maximum CPU utilization .
obtained with multiprogramming
load store
0 CPU-I/O Burst Cycle — Process e ore e CPU burst

execution consists of a cycle of
CPU execution and I/0O wait

1/O burst
0 CPU burst followed by I/O burst stors lncrement
. . . . . ind CPU b
0 CPU burst distribution is of main wiite o fle ot
concern
1/O burst
load store
add store CPU burst
read from file
1/O burst
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CPU Scheduler

0 The CPU scheduler selects from among the processes in ready
queue, and allocates a CPU core to one of them

0 Queue may be ordered in various ways
0 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
O Scheduling under 1 and 4 is nonpreemptive
O All other scheduling is preemptive
0 Consider access to shared data
0 Consider preemption while in kernel mode
0 Consider interrupts occurring during crucial OS activities

nonpreemptive: limusnmsnmsiaunaaiy /{;\\
preemptive: imsnmshaunaisiu
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g Dispatcher gy First- Come, First-Served (FCFS) Scheduling
0 Dispatcher module gives control of the CPU to Process Burst Time
the process selected by the short-term P 24
scheduler; this involves: !
0 switching context i 3
P3 3

0 switching to user mode 0 Suppose that the processes arrive in the order: P, , P, , P,

0 jumping to the proper location in the user The Gantt Chart for the schedule is:

program to restart that program dispatch
0 Dispatch latency — time it takes for the preney P P P
dispatcher to stop one process and start ! 2 °
another running o 2 z *
0 Waiting time for P, = 0; P, = 24; P;=27 mS
1 2 3
0 Average waiting time: (0 + 24 +27)/3 =17 mS
’ 0 Turnaround Time : P,=24 ;P,= 27 ;P,;= 30 mS "
Dispatcher: idwinms'lili state du, ddado i //:;:\Q ! z ¢ /(\
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- Scheduling Criteria gl FCFS Scheduling (Cont.)
0 CPU utilization — keep the CPU as busy as possible Suppose that the processes arrive in the order:
0 Throughput — # of processes that complete their execution per time unit Py, P, P,
0 Turnaround time — amount of time to execute a particular process O The Gantt chart for the schedule is:
(hawadlwsiwaigauszananatin 4 aunsrinnu)
0 Waiting time — amount of time a process has been waiting in the ready P P P
queue (naniilwsiwaiiu q soneuil Ready queue Aauazgaus:nanadu CPU) 2 N !
o 3 5 )
o Resppnse tirpe - almount of limg it takes from when a reques@ was 0 Waiting time for P,;=6;,P,=0.P;=3 mS
submitted until the first response is produced, not output (for time-sharing
environment) Py Py Py
O Average waiting time: (6 +0+3)/3=3 mS
O Turnaround Time: Py=30 ;P,=3 ;P;=6 mS
O Much better than previous case
/f”“?\} 0 Convoy effect - short process behind long process /1,-«'\
s 4‘,} 0 Consider one CPU-bound and many 1/O-bound processes
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4%’ Scheduling Algorithm Optimization Criteria “4¥Shortest-Job-First (SJF) Scheduling
0 Max CPU utilization 0 Associate with each process the length of its next CPU burst
0 Max throughput 0 Use these lengths to schedule the process with the shortest time
0 Min turnaround time O Two schemes:
0 Min waiting time 0 nonpreemptive —once CPU given to the process it cannot be
0 Min response time preempted until completes its CPU burst.

0 preemptive —if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the Shortest-Remaining-Time-First (SRTF).

0 SJF is optimal — gives minimum average waiting time for a given set of
processes

0 The difficulty is knowing the length of the next CPU request

N ,/:;;7 arrive : i . /f(\
5
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Example of SJF »7!  Practice: Shortest-remaining-time-first
Process Burst Time 0 Now we add the concepts of varying arrival times and preemption to
P 6 the analysis
1
P, 8 Process Arrival Time Burst Time
P, 7 P, 0 8
P, 3 P, 1 4
Py 2 9
** yn Process widwmidoniu
0 SJF scheduling chart Py 3 5

O Preemptive SJF Gantt Chart
P, P, Py P, ‘
] P P, P, P, P,
0 3 9 16 24
[ 1 5 10 17 26
P, P, Py P, c

0 Average waiting time = (3 +16+9+0)/4=7 mS 0 Average waiting time = 77?7
0 Turnaround Time: P,=9; P, =24; P;=16; P,=3 ; 0 Turnaround time = ?2?2? /(\
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557 \ Example of nonpreemptive SJF

EY

5 Round Robin (RR)

Process Arrival Time Burst Time
Py 0.0 6 0 Each process gets a small unit of CPU time (time quantum q),
P, 2.0 8 usually 10-100 milliseconds. After this time has elapsed, the
P, 4.0 7 process is preempted and added to the end of the ready queue.
P, 5.0 3 O If there are n processes in the ready queue and the time

quantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)q time units.

** Process wfwna hiniiu

0 SJF scheduling chart : nuu nonpreemptive lirunsaumsnmsiamnmaiild 0 Timer interrupts every quantum to schedule next process

P 0 Performance
! Pa Ps P2 0 qlarge = FIFO
0 6 9 16 24 0 g small = g must be large with respect to context switch,
otherwise overhead is too high
P, P, Py P,

O Average waiting time =(0+14 +5+1)/4=20/4= 5 mS
LA —
0-0/[16-2 [o-a] |65 [ * A Arrival time

= Turnaround Time = P;=,6 ,P,=_,22 , P;=42 ,P,=,4 mS Y,
Oporating System Concepts—10" Edition | 6-0 | | 24-2 | | 16-4 Q.| Silberschatz, Galvin and Gagne 02

time quantum: danumimnm
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«» E le of ive SJF S5 ith Ti
57 xample of preemptive S “4%” Example of RR with Time Quantum = 4
Process Arrival Time Burst Time Process Burst Time
P 0.0 6 Py 24
P, 2.0 8 P,
P, 4.0 7 Py 3
P, 1.0 3 * ynprocess mdwmiduni
** Process i hiniiu

0 The Gantt chartis:

L

P,

Ps

Py

Py

F’1":’1

Py

0 SJF scheduling chart : nuu preemptive mmsnmsimamnmsinld
0 4 7 10 14 18 22 26 30

P, P, P
P, Py | P e
1o 1 Py Py 0 average waiting time: (6 + 4 +7)/3= 567 mS
/'

_ N
0 1 4 9 16 24 26-4-4-4-4-4/ 4 ‘ 7 ‘

P, P, P; P
L N 0 Turnaround time: P4=30 ;P,=7 ;P3=10 ;

O Average waiting time = (3 + 14 + 5 + Qu4 =22/4= 55 mS
aa ““1-1 * 2 Arrival time 0 Typically, higher average turnaround than.SJF,. but better response
16-2 m 0 q should be large compared to context switch time

= Turnaround Time = ??? Y, O qusually 10ms to 100ms, context switch < 10 usec y
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& ;’;7‘ * Time Quantum and Context Switch Time

EN

process time = 10 quantum context
switches
| e ™
0 10
I
| | | 1
T
0 6 10
HEEEEEEEN N . :
0O 1t 2 383 4 5 6 7 8 9 10
A
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>/ Example of Priority Scheduling
Process Burst Time Priority
P, 6 3
P, 8 1
P 7 4
P, 3 2
Ps 9 5

0 priority scheduling chart

** pn Process widwmidoniu

P,

Py

Py Py

Ps

0

8

1
Py

17
P, Py Py Ps

24

33

0 Average waiting time = (11+0+17 +8+24)/5= 12 mS
Py=17; P, =8; P3=24; P,=11; Ps= 33; _

0 Turnaround Time :

Concepts - 10" Edition
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Turnaround Time Varies With The Time Quantum

Operating System Concepts — 101 Edition 5.20

process | time
125 - P G
120 P, 3
Py 1
g 1sp 7 7
o
S 110
e
]
105 F
£108 80% of CPU bursts
2 100 | should be shorter than q
g
S osf
20
L1 Turnaround time

depends on the size

time quantum of quantum time
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Priority Scheduling

o

o

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

0 Preemptive

0 Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

Problem = Starvation — low priority processes may never execute

Solution = Aging — as time progresses increase the priority of the
process

R
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Practice: Priority Scheduling

Process

Py
P,
Py
Ps
Ps

Burst Time

10

a = N =

0 Priority scheduling Gantt Chart

Priority

N oA s W

O Average waiting time = ???

0 Turnaround Time : ?2??
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7 Practice: Priority Scheduling w/ Round-Robin

Process

Py
P2
Ps
Py
Ps

Burst Time

4
5
8
7
3

Priority

- NN W

3

0O Run the process with the highest priority. Processes with the same priority

run round-robin

0 *adgsu Gantt Chart with 2 ms time quantum ??7?

Concepts - 10 Edition
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557 Multilevel Queue

0 With priority scheduling, have separate queues for each priority.
0 Schedule the process in the highest-priority queue!

priority =0

priority =1

priority =2
L]
L]

priority =n
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ol Multilevel Queue

O Prioritization based upon process type

highest priority

=] real-time processes —=
——p] system processes F—
] interactive processes ==
b batch processes =

lowest priority

Silberschatz, Galvin and Gagne ©2018
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.;:ﬁ‘: Example of Multilevel Feedback Queue

O Three queues:

0 Q- RRwith time quantum 8
milliseconds

0 Q;—RRtime quantum 16 milliseconds

 —
0 Q,-FCFs quantum = 8 ‘
0 Scheduling
——
0 A new job enters queue Q, which is _ ‘
served FCFS a6
» When it gains CPU, job receives 8
milliseconds
» Ifitdoes not finishin 8
milliseconds, job is moved to
queue Q,

0 At Q, jobis again served FCFS and

! i o Queue danbiaunsafnienldmn Queue
receives 16 additional milliseconds

Aouminhunshimds via d1li empty wie dahi
wuatnaiinmualif (time quantum)

2

Silberschatz, Galvin and Gagne ©2018

» Ifit still does not complete, it is
preempted and moved to queue Q,
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& s_;“" Multilevel Feedback Queue

0 A process can move between the various queues; aging can be
implemented this way

0 Multilevel-feedback-queue scheduler defined by the following
parameters:

o

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

oo oo

method used to determine which queue a process will enter
when that process needs service

demote: an
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Thread Scheduling

0 Distinction between user-level and kernel-level threads
O When threads supported, threads scheduled, not processes

O Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP

0 Known as process-contention scope (PCS) since scheduling
competition is within the process

0 Typically done via priority set by programmer

0 Kernel thread scheduled onto available CPU is system-contention
scope (SCS) — competition among all threads in system

LWP: Light-Weight Process dhulnsmaiiomegludves USEF Space f‘“\

Tunsiiiidl LWP wawwieziinsliminnnsimriuiy Tnsandnde
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5%  Multiple-Processor Scheduling

0 CPU scheduling more complex when multiple CPUs are
available

O Multiprocess may be any one of the following architectures:
Multicore CPUs

Multithreaded cores

NUMA systems

o
o
o
0 Heterogeneous multiprocessing

Homogeneous : mmidoaiu  5u cpu i Intel milouiu
Heterogeneous : wawnn  ucpu du Intel, AMD, ultra spark
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Multiple-Processor Scheduling

O Symmetric multiprocessing (SMP) is where each processor is self
scheduling.

O All threads may be in a common ready queue (a)
O Each processor may have its own private queue of threads (b)

RARIEEY

'
|
v

common ready queue per-core run queues
(a) (b)

SMP: Symmetric Multiprocessing fommiwiisaz Processor
fimssams scheduling vesdes
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U .
g Multicore Processors

O Recent trend to place multiple processor cores on same
physical chip

O Faster and consumes less power
O Multiple threads per core also growing

0 Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

[ M Jmemonysa oy

thread
| ¢ ‘ M | c ‘ M | c ‘ M | c ‘ M ‘
time
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Multithreaded Multicore System

Each core has > 1 hardware threads.

If one thread has a memory stall, switch to another thread!

C compute cycle memory stall cycle
thread

—»‘C‘M‘C‘M‘CIM‘C‘M

thread,

thready
—_—

time

memory stall cycle : unmi Cpu fossomnidoyail lildeghnmieanuiligaload ¥l
miswni
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“%7’ Multithreaded Multicore System

0 Chip-multithreading (CMT) processor
assigns each core multiple
hardware threads. (Intel refers
to this as hyperthreading.)

core o core

Fardwaretead
erdvare et v vt

core, core;

Fardvare tead
rgware tead Tardwar tread

0 On a quad-core system with 2
hardware threads per core, the

operating system sees 8 logical . -
processors. operating system view

Silberschatz, Galvin and Gagne ©2018
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“%7’ Multithreaded Multicore System

232 3 | e

0 Two levels of scheduling:

deciding which software
thread to run on a logical
CPU

1. The operating system
level 1 l

hardware threads
(logical processors)
2. How each core decides

which hardware thread to run |eve|2l

on the physical core.

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts - 10t Edition 535

EN

;‘) Multiple-Processor Scheduling — Load Balancing

0 If SMP, need to keep all CPUs loaded for efficiency

O Load balancing attempts to keep workload evenly distributed

0 Push migration — periodic task checks load on each processor,
and if found pushes task from overloaded CPU to other CPUs

0 Pull migration — idle processors pulls waiting task from busy
processor

fimssamse scheduling vesdies

SMP: Symmetric Multiprocessing femshawiia: Processor ‘
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Operating System Example g%  Windows Priority Classes (Cont.)

O If wait occurs, priority boosted depending on what was waited for
0 Windows scheduling 0 Foreground window given 3x priority boost
0 Windows 7 added user-mode scheduling (UMS)
0 Applications create and manage threads independent of kernel
0 For large number of threads, much more efficient

0 UMS schedulers come from programming language libraries like
C++ Concurrent Runtime (ConcRT) framework
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Windows Scheduling g Windows Priorities
0 Windows uses priority-based preemptive scheduling
0 Highest-priority thread runs next
0 Dispatcher is scheduler
. 5 N real- (il above normal | Pelow idle
0 Thread runs until (1) blocks, (2) uses time slice, (3) time 9 normal normal | priority
preempted by higher-priority thread time-critical 31 15 15 iB 15 15
O Real-time threads can preempt non-real-time highest 26 15 12 10 8 6
0 32-level priority scheme above normal 25 14 11 9 7 5
Variabl \ is 1-15 i \ is 16-31 normal 24 13 10 8 6 4
0 Variable class is 1-15, real-time class is 16-. T = = 5 = 5 5
O Priority 0 is memory-management thread Jowest 22 1 8 6 4 2
O Queue for each priority idle 16 1 1 1 1 1
O If no run-able thread, runs idle thread
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Windows Priority Classes 7 Algorithm Evaluation

0 Win32 APl identifies several priority classes to which a process can belong 0 How to select CPU-scheduling algorithm for an 0S?

0 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 0 Determine criteria, then evaluate algorithms
ABOVE_NORMAL_PRIORITY_CLASS NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS 0 Deterministic modeling

o Allare variable except REALTIME 0 Type of analytic evaluation
0 Athread within a given priority class has a relative priority 0 Takes a particular predetermined workload and defines the
o TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, performance of each algorithm for that workload
LOWEST, IDLE . . .
O Priority class and relative priority combine to give numeric priority 0 Consider 5 processes arriving at time 0:
0 Base priority is NORMAL within the class Process  Burst Time
O  If quantum expires, priority lowered, but never below base P 10
P, 29
Py 3
Py 7
Ps 12

'
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Deterministic Evaluation

Sy
0 For each algorithm, calculate minimum average waiting time
0 Simple and fast, but requires exact numbers for input, applies only to

those inputs
0 FCSis 28ms:
‘ Py l P, |p3 P, Py ‘
0 10 9 @ 49 61
0 Non-preemptive SFJ is 13ms:
[w]n ] ] =
32 61

03 10 20
]

5
6t

0 RRis 23ms:
(n [ nFn]n]n
2028 0 40 50 52
Al oo -
gadmiulnswanguil exiorsanon

0 10
msnosanSauiiiey Scheduling Algorithm fas
m average waiting time Y94 Algorithm ?‘Iﬁﬁhﬁaﬂﬁqﬂ
ﬁai:*uﬂlunsﬁii Algorithm Non-preemptive SJF ﬁflfh 13 mS ?Na'?llqﬂ g
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Queueing Models

Describes the arrival of processes, and CPU and I/O bursts

probabilistically
0 Commonly exponential, and described by mean
0 Computes average throughput, utilization, waiting time, etc
0 Computer system described as network of servers, each with
queue of waiting processes

0 Knowing arrival rates and service rates
0 Computes utilization, average queue length, average wait

time, etc

*{:) :Evaluation of CPU Schedulers by Simulation

performance
> statistics
for FCFS

simulation

FCFS

performance
statistics

=>
for SUF

simulation

SJF

performance
=>  statistics
for RR (g = 14)

simulation

trace tape

RR (g = 14)
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Implementation

Even simulations have limited accuracy
Just implement new scheduler and test in real systems

O  High cost, high risk
O  Environments vary
Most flexible schedulers can be modified per-site or per-system

Or APIs to modify priorities
But again environments vary

Silberschatz, Galvin and Gagne ©2018
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Simulations

|
Sy

O Queueing models limited

0 Simulations more accurate
0 Programmed model of computer system

0 Clock is a variable
0 Gather statistics indicating algorithm performance

0 Data to drive simulation gathered via

» Random number generator according to probabilities
» Distributions defined mathematically or empirically
» Trace tapes record sequences of real events in real systems

Concepts - 10" Edition

End of Chapter 4
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