
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4 : CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4 : CPU Scheduling

Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Thread Scheduling

Multi-Processor Scheduling

Operating Systems Example

Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

Describe various CPU scheduling algorithms

Assess CPU scheduling algorithms based on scheduling criteria

Explain the issues related to multiprocessor and multicore

scheduling

Describe the scheduling algorithm used in the Windows operating

system

Apply modeling and simulations to evaluate CPU scheduling

algorithms

5.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

Maximum CPU utilization

obtained with multiprogramming

CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

CPU burst followed by I/O burst

CPU burst distribution is of main

concern

5.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Histogram of CPU-burst Times

Large number of short bursts

Small number of longer bursts

5.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CPU Scheduler

The CPU scheduler selects from among the processes in ready

queue, and allocates a CPU core to one of them

Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Consider access to shared data

Consider preemption while in kernel mode

Consider interrupts occurring during crucial OS activities

nonpreemptive: ไม่สามารถแทรกการท างานกลางคนั
preemptive: แทรกการท างานกลางคนั

5.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dispatcher

Dispatcher module gives control of the CPU to

the process selected by the short-term

scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user

program to restart that program

Dispatch latency – time it takes for the

dispatcher to stop one process and start

another running

Dispatcher: ตวัส่งข่าวสารไปยงั state อ่ืน , ตวัส่งต่อ

5.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per time unit

Turnaround time – amount of time to execute a particular process

(เวลาของโพรเซสทีถ่กูประมวลผลน้ัน ๆ จบการท างาน)

Waiting time – amount of time a process has been waiting in the ready

queue (เวลาทีโ่พรเซสน้ัน ๆ รอคอยที ่Ready queue กอ่นจะถกูประมวลผลกบั CPU)

Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-sharing

environment)

5.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Algorithm Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

5.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27 mS

Average waiting time: (0 + 24 + 27)/3 = 17 mS

Turnaround Time : P1= 24 ; P2= 27 ; P3= 30 mS

P P P
1 2 3

0 24 3027

P1 P2 P3

5.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3 mS

Average waiting time: (6 + 0 + 3)/3 = 3 mS

Turnaround Time : P1= 30 ; P2= 3 ; P3= 6 mS

Much better than previous case

Convoy effect - short process behind long process

Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

P1 P2 P3

5.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest time

Two schemes:

nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.

preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preempt. This scheme is

know as the Shortest-Remaining-Time-First (SRTF).

SJF is optimal – gives minimum average waiting time for a given set of

processes

The difficulty is knowing the length of the next CPU request

arrive : มาถึง

5.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of SJF

Process Arrival Time Burst Time

P1 .0 6

P2 8

P3 7

P4 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 mS

Turnaround Time :

P4
P3P1

3 160 9

P2

24

** ทุก Process มาถึงเวลาเดียวกนั

P1 P2 P3 P4

P1= 9; P2 = 24; P3 =16; P4= 3 ; mS

5.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of nonpreemptive SJF

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

SJF scheduling chart : แบบ nonpreemptive ไม่สามารถแทรกการท างานกลางคนัได้

Average waiting time =(0 + 14 + 5 + 1) / 4 = 20/4 = 5 mS

P1 P2 P3 P4

** Process มาถึงเวลาไม่เท่ากนั

* คิด Arrival time ดว้ย0-0 16-2 9-4 6-5

P1 P3P4

0 96

P2

16 24

▪ Turnaround Time = P1= 6 ,P2= 22 , P3= 12 , P4= 4 mS

6-0 24-2 16-4 9-5

5.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of preemptive SJF

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 1.0 3

SJF scheduling chart : แบบ preemptive แทรกการท างานกลางคนัได้

Average waiting time = (3 + 14 + 5 + 0) / 4 = 22/4 = 5.5 mS

P1 P3

0 169

P2

P1 P2 P3 P4

** Process มาถึงเวลาไม่เท่ากนั

4-1 16-2 9-4 1-1 * คิด Arrival time ดว้ย

241

P4

4

P1

▪ Turnaround Time = ???

5.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice: Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive SJF Gantt Chart

Average waiting time = ????

Turnaround time = ???

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

5.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

Timer interrupts every quantum to schedule next process

Performance

q large FIFO

q small q must be large with respect to context switch,

otherwise overhead is too high

time quantum: ส่วนแบ่งเวลา

5.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of RR with Time Quantum = 4
Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:

average waiting time: (6 + 4 + 7) /3 = 5.67 mS

Turnaround time : P1= 30 ; P2 = 7 ; P3= 10 ;

Typically, higher average turnaround than SJF, but better response

q should be large compared to context switch time

q usually 10ms to 100ms, context switch < 10 usec

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

26-4-4-4-4-4 4 7

* ทุก process มาถึงเวลาเดียวกนั

P1 P2 P3

5.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Time Quantum and Context Switch Time

5.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

Turnaround time

depends on the size
of quantum time

5.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority

(smallest integer highest priority)

Preemptive

Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

Problem Starvation – low priority processes may never execute

Solution Aging – as time progresses increase the priority of the

process

5.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Priority Scheduling

Process Burst Time Priority

P1 6 3

P2 8 1

P3 7 4

P4 3 2

P5 9 5

priority scheduling chart

Average waiting time = (11 + 0 + 17 + 8+ 24) / 5 = 12 mS

Turnaround Time :

P2
P1P4

0 8

P3

P1 P2 P3 P4 P5

P1= 17; P2 = 8; P3 =24; P4= 11; P5= 33;

11 24

P5

17 33

** ทุก Process มาถึงเวลาเดียวกนั

5.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice: Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

Average waiting time = ???

Turnaround Time : ???

5.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Practice: Priority Scheduling w/ Round-Robin

ProcessA arri Burst TimeT Priority

P1 4 3

P2 5 2

P3 8 2

P4 7 1

P5 3 3

❑ Run the process with the highest priority. Processes with the same priority

run round-robin

จงเขยีน Gantt Chart with 2 ms time quantum ???

5.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multilevel Queue

With priority scheduling, have separate queues for each priority.

Schedule the process in the highest-priority queue!

5.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multilevel Queue

Prioritization based upon process type

5.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multilevel Feedback Queue

A process can move between the various queues; aging can be

implemented this way

Multilevel-feedback-queue scheduler defined by the following

parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter

when that process needs service

aging : เพิ่มศกัด์ิข้ึน
demote: ลดศกัด์ิลง

5.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Multilevel Feedback Queue

Three queues:

Q0 – RR with time quantum 8

milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

Q0

Q1

Q2

Queue ถดัมาไม่สามารถเร่ิมท างานได ้หาก Queue

ก่อนหนา้ท างานไม่เสร็จ หรือ ยงัไม่ empty หรือ ยงัไม่
หมดช่วงเวลาท่ีก าหนดให ้(time quantum)

5.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Scheduling

Distinction between user-level and kernel-level threads

When threads supported, threads scheduled, not processes

Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

Known as process-contention scope (PCS) since scheduling

competition is within the process

Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

LWP: Light-Weight Process เป็นโพรเซสท่ีท างานอยูใ่นส่วนของ user space
ในกรณีท่ีมี LWP หลายตวัจะมีการใชท้รัพยากรร่วมกนักบัโพรเซสหลกัดว้ย

5.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are

available

Multiprocess may be any one of the following architectures:

Multicore CPUs

Multithreaded cores

NUMA systems

Heterogeneous multiprocessing

Homogeneous : แบบเดียวกนั เช่น cpu เป็น Intel เหมือนกนั
Heterogeneous : หลายแบบ เช่น cpu เป็น Intel, AMD, ultra spark

5.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling

Symmetric multiprocessing (SMP) is where each processor is self

scheduling.

All threads may be in a common ready queue (a)

Each processor may have its own private queue of threads (b)

SMP: Symmetric Multiprocessing คือการท างานท่ีแต่ละ Processor
มีการจดัตาราง scheduling ของตวัเอง

5.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Processors

Recent trend to place multiple processor cores on same

physical chip

Faster and consumes less power

Multiple threads per core also growing

Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

5.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Multicore System

Each core has > 1 hardware threads.

If one thread has a memory stall, switch to another thread!

memory stall cycle : ช่วงเวลาท่ี cpu ตอ้งรอการน าขอ้มูลท่ีไม่ไดอ้ยูใ่นหน่วยความจ าใหถู้กload มาไวใ้น
หน่วยความจ า

5.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Multicore System

Chip-multithreading (CMT)

assigns each core multiple

hardware threads. (Intel refers

to this as hyperthreading.)

On a quad-core system with 2

hardware threads per core, the

operating system sees 8 logical

processors.

5.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Multicore System

Two levels of scheduling:

1. The operating system

deciding which software

thread to run on a logical

CPU

2. How each core decides

which hardware thread to run

on the physical core.

5.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling – Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

Load balancing attempts to keep workload evenly distributed

Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs

Pull migration – idle processors pulls waiting task from busy

processor

SMP: Symmetric Multiprocessing คือการท างานท่ีแต่ละ Processor
มีการจดัตาราง scheduling ของตวัเอง

5.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Example

Windows scheduling

5.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Scheduling

Windows uses priority-based preemptive scheduling

Highest-priority thread runs next

Dispatcher is scheduler

Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

Real-time threads can preempt non-real-time

32-level priority scheme

Variable class is 1-15, real-time class is 16-31

Priority 0 is memory-management thread

Queue for each priority

If no run-able thread, runs idle thread

5.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Priority Classes

Win32 API identifies several priority classes to which a process can belong

REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

All are variable except REALTIME

A thread within a given priority class has a relative priority

TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,

LOWEST, IDLE

Priority class and relative priority combine to give numeric priority

Base priority is NORMAL within the class

If quantum expires, priority lowered, but never below base

5.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Priority Classes (Cont.)

If wait occurs, priority boosted depending on what was waited for

Foreground window given 3x priority boost

Windows 7 added user-mode scheduling (UMS)

Applications create and manage threads independent of kernel

For large number of threads, much more efficient

UMS schedulers come from programming language libraries like

C++ Concurrent Runtime (ConcRT) framework

5.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Priorities

5.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm Evaluation

How to select CPU-scheduling algorithm for an OS?

Determine criteria, then evaluate algorithms

Deterministic modeling

Type of analytic evaluation

Takes a particular predetermined workload and defines the

performance of each algorithm for that workload

Consider 5 processes arriving at time 0:

5.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deterministic Evaluation

For each algorithm, calculate minimum average waiting time

Simple and fast, but requires exact numbers for input, applies only to

those inputs

FCS is 28ms:

Non-preemptive SFJ is 13ms:

RR is 23ms:

การพจิารณาเปรียบเทยีบ Scheduling Algorithm ทีด่ทีีสุ่ดส าหรับโพรเซสกลุ่มนี ้จะพจิารณาจาก
ค่า average waiting time ของ Algorithm ทีม่ค่ีาน้อยทีสุ่ด
ดงัน้ันในกรณนีี้ Algorithm Non-preemptive SJF ทีม่ค่ีา 13 mS จึงดทีีสุ่ด

5.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Queueing Models

Describes the arrival of processes, and CPU and I/O bursts

probabilistically

Commonly exponential, and described by mean

Computes average throughput, utilization, waiting time, etc

Computer system described as network of servers, each with

queue of waiting processes

Knowing arrival rates and service rates

Computes utilization, average queue length, average wait

time, etc

5.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Simulations

Queueing models limited

Simulations more accurate

Programmed model of computer system

Clock is a variable

Gather statistics indicating algorithm performance

Data to drive simulation gathered via

 Random number generator according to probabilities

 Distributions defined mathematically or empirically

 Trace tapes record sequences of real events in real systems

5.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Evaluation of CPU Schedulers by Simulation

5.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Most flexible schedulers can be modified per-site or per-system

Or APIs to modify priorities

But again environments vary

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 4

