711204341

Chapter 3: Processes
| |

oncepts — 10% Edition Silberschatz, Galvin and Gagne €2018

Objectives

O Identify the separate components of a process and illustrate
how they are represented and scheduled in an operating
system.

0 Describe how processes are created and terminated in an
operating system, including developing programs using the
appropriate system calls that perform these operations.

O Describe and contrast interprocess communication using
shared memory and message passing.

O Describe client-server communication using sockets and
remote procedure calls.

A

d Gagne ©2018

10" Edition 33 Silberschatz, Galy

Process Concept (Cont.)

O Program is passive entity stored on disk (executable file);
process is active

0 Program becomes process when executable file loaded into
memory

0 Execution of program started via GUI mouse clicks, command
line entry of its name, etc

0 One program can be several processes
0 Consider multiple users executing the same program

A

10" Edition 35 Silberschatz, Galvinand Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

Chapter 3: Processes

OO0 o0ooooog

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

IPC in Shared-Memory Systems

IPC in Message-Passing Systems
Examples of IPC Systems
Communication in Client-Server Systems

Concepts — 10" Edition 32 Silberschatz, Galvin and Gagne ©2018

Process Concept

O An operating system executes a variety of programs that run as a
process.
0 Process —a program in execution; process execution must
progress in sequential fashion
O Multiple parts
0 The program code, also called text section
o Current activity including program counter, processor
registers
0 Stack containing temporary data
» Function parameters, return addresses, local variables
0 Data section containing global variables
0 Heap containing memory dynamically allocated during run time
Concepts - 10" Editon s Sitberschaz Golvinang Gogne 0201

Process in Memory

stack

heap

data

text

Concepts - 10" Edition 36 Silberschatz, Galvin and Gagne ©2018

711204341

=

=
Memory Layout of a C Program

#include <stdio.h>

high argc, agrv #include <stdlib.h>
memory
stack
int main(
L {
L - L] [lat svelues;
heap int i;
uninitialized
data values = (int *
initialized for(i = 0; i < i44)
data values(il = i;
low
return 0;
memory text)
10" Edition 37 Silberschatz, Galvin and Gagne ©2018

g Process State

O As aprocess executes, it changes state

New: The process is being created

Running: Instructions are being executed

Waiting: The process is waiting for some event to occur
Ready: The process is waiting to be assigned to a processor
Terminated: The process has finished execution

o

o

o

o

o

A

Silberschatz, Galvin and Gagne ©2018

Concepts - 10" Edition 38

admitted interrupt

scheduler dispatch

1/0 or event completion 1/0 or event wait

dispatch: simsdainms f“"‘\

10" Edition 39 Silberschatz, Galvinand Gagne ©2018

Process Control Block (PCB)

Information associated with each process
(also called task control block)

0 Process state — running, waiting, etc process state

o Program counter — location of process number
instruction to next execute

program counter

O CPU registers — contents of all process-
centric registers registers

O CPU scheduling information- priorities,
scheduling queue pointers

memory limits
list of open files

O Memory-management information —
memory allocated to the process e

O Accounting information — CPU used,
clock time elapsed since start, time
limits

0 1/ status information — /O devices
allocated to process, list of open files

Concepts — 10" Edition 310 Silberschatz, Galvinand Gagne €2018

Threads

O So far, process has a single thread of execution
O Consider having multiple program counters per process
0 Multiple locations can execute at once
» Multiple threads of control -> threads

O Must then have storage for thread details, multiple program
counters in PCB

10" Edition 341 Silberschatz, Galvinand Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */

struct list_head children; /* this process’s children */
struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process */

N NN

struct task_struct struct task_struct struct task_struct
process information process information e process information

~— T S

current
(currently executing proccess)

Concepts - 10" Edition 312 Silberschatz, Galvinand Gagne €2018

711204341

Process Scheduling

O Maximize CPU use, quickly switch processes onto CPU core

O Process scheduler selects among available processes for
next execution on CPU core

O Maintains scheduling queues of processes

0 Ready queue — set of all processes residing in main
memory, ready and waiting to execute

0 Wait queues — set of processes waiting for an event (i.e.
1/0)

0 Processes migrate among the various queues

A

10" Edition 313 Silberschatz, Galvinand Gagne ©2018

Ready and Wait Queues

queue header PCB , PCB ,
ready ‘ head +—’ =
queue l tail registers registers
PCB, PCB,, PCB,
—_ —_— T
wait head
queue tail

Concepts — 10" Edition 314 Silberschatz, Galvinand Gagne €2018

EN

o . .
gy Representation of Process Scheduling
(@)

1/0 wait queue |~—| 1/0 request |¢—
time slice
expired

ter ation
wait queue

interrupt interrupt wait for an
occurs wait queue interrupt
7

Each regular box represents a queue

A

Queueing-diagram

10" Edition 315 Silberschatz, Galvinand Gagne ©2018

SCPU Switch From Process to Process

A context switch occurs when the CPU
switches from one process to another.

process P, operating system process P,

interrupt or system call

executing
T save state into PCB,

reload state from PCB,

idle interrupt or system call executing

save state into PCB,

reload state from PCB, /«ﬂ\,\

idle

idle

executing 1[

Concepts — 10" Edition 316 Silberschatz, Galvinand Gagne €2018

Context Switch

0 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

0 Context of a process represented in the PCB

0 Context-switch time is overhead; the system does no useful
work while switching

0 The more complex the OS and the PCB => the longer the
context switch

0 Time dependent on hardware support

0 Some hardware provides multiple sets of registers per CPU
= multiple contexts loaded at once

A

10" Edition 347 Silberschatz, Galvinand Gagne ©20:

AIAITINYINNTABNNILART AULAINNAART 1.

> Multitasking in Mobile Systems

0 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

O Due to screen real estate, user interface limits iOS provides for a

[=]

Single foreground process- controlled via user interface

o

Multiple background processes— in memory, running, but not
on the display, and with limits

Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

0 Android runs foreground and background, with fewer limits
0 Background process uses a service to perform tasks

[=]

o Service can keep running even if background process is
suspended

0 Service has no user interface, small memory use

Concepts - 10" Edition 318 Silberschatz, Galvinand Gagne €2018

711204341

i . .
o ot Operations on Processes Process Creation

0 System must provide mechanisms for: 0 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

O Generally, process identified and managed via a process
identifier (pid)

O Resource sharing options

0 process creation
0 process termination

0 Parent and children share all resources
0 Children share subset of parent’ s resources
0 Parent and child share no resources
O Execution options
0 Parent and children execute concurrently
0 Parent waits until children terminate

10" Edition 319 Silberschatz, Galvinand Gagne ©2018 Concepts — 10" Edition 320 Silberschatz, Galvinand Gagne €2018

| .
*"*f’ A Tree of Processes in Linux

Process Creation (Cont.)

O Address space
0 Child duplicate of parent
0 Child has a program loaded into it

0 UNIX examples

pid =3028 0 fork () system call creates new process
0 exec () system call used after a fork () to replace the
process’ memory space with a new program

0 Parent process calls wait () for the child to terminate

bash
pid = 8416

sshd
pid =3610

parent (pid > 0)

wait() parent resumes

parent
child (pid = 0)
A A
B \
10 Edition 3.21 Silb hatz, Gal d Gagne ©2018 Concepts — 10" Edition 3.22 Silberschatz, Galvin and Gagne ©2018
J"“ l«x
.
4%’ C Program Forking Separate Process g% Creating a Separate Process via Windows API
:}Mi“gs <5{3(tv§“-h> Sinciute) sainlowiis
#include <unistd.h> A2t aain(YUID)
STARTUPINFO si;
int main() 'PROCESS_INFORMATION pi;
. . /* allocate memory */
pid-t pid; ZeroMenory (ksi, sizeof(si));
si.cb = sizeof(si);
/* fork a child process x/ Zeroltemory (4pi, sizeof(pi));
pid = fork(); /* create child process */
if (ICreateProcess(NULL, /* use command line #/
if (pid < 0) { /% error occurred */ "C:\\WIIWWS\\synsmM\\mpnnc.axu“. /a/cumnand */
L7 s s s e
fprintf (stderr, "Fork Failed"); NULL, /* don’t inherit thread handle #/
. FALSE, /# disable handle inheritance */
return 1; 0, /+ no creation flags */
NULL, /* use parent’s enviromment block %/
else if (pid == 0) { /* child process */ NULL, /+ use parent’s existing directory =/
execlp("/bin/1s","1s" ,NULL); :;ii;
else { /* parent process */ G toeipia Failed");
/* parent will wait for the child to complete */
wait (NULL) ; /+ parent will wait for the child to camplete */
printf("Child Complete"); WaitForSingleObject (pi.bProcess, INFINITE);
printf("Child Complete");
/* close handles #/
: CloseHandle(pi. hProcess) ;
Teturn 0; CloseHandle(pi.hThread) ;
} - }
10 Edition 3.23 Silb hatz, Gal d Gagne ©2018 Concepts — 10" Edition 3.24 Silberschatz, Galvin and Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

711204341

Process Termination

0 Process executes last statement and then asks the operating

system to delete it using the exit () system call.
0 Returns status data from child to parent (via wait ())

0 Process’ resources are deallocated by operating system

0 Parent may terminate the execution of children processes using

the abort () system call. Some reasons for doing so:
0 Child has exceeded allocated resources
0 Task assigned to child is no longer required

0 The parentis exiting and the operating systems does not
allow a child to continue if its parent terminates

10" Edition 325 Silberschatz, Galy

d Gagne ©2018

=

)
‘Android Process Importance Hierarchy

Mobile operating systems often have to terminate processes to reclaim

system resources such as memory. From most to least important:
Foreground process

Visible process

Service process

Background process

Empty process

Android will begin terminating processes that are least important.

10" Edition 327 Silberschatz, Galy

d Gagne ©2018

Interprocess Communication

Processes within a system may be inde lent or P ing

Cooperating process can affect or be affected by other processes,
including sharing data

Reasons for cooperating processes:

0 Information sharing

0 Computation speedup

0 Modularity

0 Convenience
Cooperating processes need interprocess communication (IPC)
Two models of IPC

0 Shared memory

0 Message passing

10" Edition 329 Silberschatz, Galy

d Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

Process Termination

O Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

0 cascading termination. All children, grandchildren, etc. are
terminated.

0 The termination is initiated by the operating system.

0 The parent process may wait for termination of a child process by
using the wait () systemcall. The call returns status information
and the pid of the terminated process

pid = wait(&status);
0 If no parent waiting (did not invoke wait ()) process is a zombie
O If parent terminated without invoking wait , process is an orphan

Concepts — 10" Edition 3.26 Silberschatz, Galvinand Gagne €2018

e~

. . .
%7 Multiprocess Architecture — Chrome Browser;

0 Many web browsers ran as single process (some still do)
0 If one web site causes trouble, entire browser can hang or crash

0 Google Chrome Browser is multiprocess with 3 different types of
processes:

0 Browser process manages user interface, disk and network 1/0

0 Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network 1/O, minimizing
effect of security exploits

0 Plug-in process for each type of plug-in

€ oo Bromae o5 s0ukcou % D Aoey ot Syter =58 - Homepage %

€ G 0 mewERgegecen e
@ chrome N oowmoan T / o

Each tab represents a separate process.

m e

Concepts — 10" Edition 328 Silberschatz, Galvinand Gagne €2018

Communications Models

(a) Shared memory. (b) Message passing.

I: process A process A
shared memory :l process B
process B
message queue
mo[mq[ma[ms] ... [m,
kernel
kernel
(a) (b)
Concepts — 10" Edition 3.30 Silberschatz, Galvinand Gagne ©2018

711204341

Cooperating Processes

0 Independent process cannot affect or be affected by the execution
of another process

Cooperating process can affect or be affected by the execution of
another process

Advantages of process cooperation
0 Information sharing
0 Computation speed-up
0 Modularity

o

o

o Convenience

10" Edition 331 Silberschatz, Galvinand Gagne ©2018

=

Interprocess Communication — Shared Memory

O An area of memory shared among the processes that wish
to communicate

0 The communication is under the control of the users
processes not the operating system.

O Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

10" Edition 333 Silberschatz, Galvinand Gagne ©2018

=

o)
$%7 Producer Process — Shared Memory

01 2 3456 7 89

LITTTITTTIT]

item next_produced;

while (true) { buffer
/* produce an item in next produced */
while (((in + 1) % BUFFER _SIZE) == out); /* do nothing- no free

buffers */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

in :point the next free position in the buffer
out: point the first full position in the buffer

buffer empty when in==out
buffer full when ((in+1) % BUFFER_SIZE)== out)
% is modulus operator Ex. 3 %10 =3

10" Edition 335 Silberschatz, Galvinand Gagne ©20:

AIAITINYINNTABNNILART AULAINNAART 1.

Producer-Consumer Problem

0 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

process
0 unbounded-buffer places no practical limit on the size
of the buffer
0 bounded-buffer assumes that there is a fixed buffer
size
£
A
Concepts_ 10" Eation s Silberschaz, Glvinand Gagne 02018

~

-3 Bounded-Buffer — Shared-Memory Solution

0 Shared data
#define BUFFER_SIZE 10
typedef struct { 01 23456 7 89

LITTTIITTIT]

buffer

} item;

item buffer [BUFFER_SIZE];
int in = 0;

int out = 0;

0 Solution is correct, but can only use BUFFER_SIZE-1 elements

in :point the next free position in the buffer
out: point the first full position in the buffer

buffer empty when in==out
buffer full when ((in+1) % BUFFER_SIZE)== out)
% is modulus operator Ex. 3 %10 =3

Concepts — 10" Edition 334 Silberschatz, Galvinand Gagne €2018

s¥Consumer Process — Shared Memory

01 234567 89

(ITTTTITIT]

buffer

item next_consumed;

while (true) {
while (in == out); /* do nothing -nothing to consume*/

/* remove an item from the buffer */
next_consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

in :point the next free position in the buffer
out: point the first full position in the buffer

buffer empty when in==out f,.m,\

Concepts — 10" Edition 3.36 Silberschatz, Galvinand Gagne €2018

711204341

4 L .
Interprocess Communication — Message Passing

0 Mechanism for processes to communicate and to synchronize
their actions

0 Message system — processes communicate with each other
without resorting to shared variables

0 IPC facility provides two operations:
0 send(message)
0 receive(message)

O The message size is either fixed or variable

Silberschatz, Galvinand Gagne ©2018

10" Edition 337

Message Passing (Cont.)

0 Implementation of communication link
o Physical:
» Shared memory
» Hardware bus
» Network
0 Logical:
» Direct or indirect
» Synchronous or asynchronous
» Automatic or explicit buffering

10" Edition 339 Silberschatz, Galvinand Gagne ©2018

Indirect Communication

0 Messages are directed and received from mailboxes (also referred
to as ports)

o Each mailbox has a unique id
0 Processes can communicate only if they share a mailbox
0 Properties of communication link
0 Link established only if processes share a common mailbox
0 A link may be associated with many processes
0 Each pair of processes may share several communication links
o Link may be unidirectional or bi-directional

o A0 Edition 341 Silberschatz, Galvinand Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

Message Passing (Cont.)

0 If processes P and Q wish to communicate, they need to:
0 Establish a ication link b 1 them
0 Exchange messages via send/receive

O Implementation issues:

o

How are links established?

o

Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

o

o

o

o

Is a link unidirectional or bi-directional?

Concepts - 10" Edition 3.38 Silberschatz, Galvinand Gagne €2018

Direct Communication

O Processes must name each other explicitly:

0 send (P, message) — send a message to process P

0 receive(Q, message)— receive a message from process Q
O Properties of communication link

0 Links are established automatically

0 Alink is associated with exactly one pair of communicating
processes

0 Between each pair there exists exactly one link
0 The link may be unidirectional, but is usually bi-directional

P

PG

A

Concepts — 10" Edition 3.40 Silberschatz, Galvinand Gagne €2018

Indirect Communication

0 Operations
0 create a new mailbox (port)
o send and receive messages through mailbox
0 destroy a mailbox
0 Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Silberschatz, Galvinand Gagne €201

V2

Concepts - 10" Edition 3.42

711204341

Indirect Communication

0 Mailbox sharing

0 Py, P, and P, share mailbox A

0 P, sends; P, and P, receive

0 Who gets the message?
0 Solutions

0 Allow a link to be associated with at most two processes
Allow only one process at a time to execute a receive
operation
Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

o

o

10" Edition 343 Silberschatz, Galvinand Gagne ©2018

Producer — Shared Memory

message next produced;

while (true) {
/* produce an item in next_produced */

send (next_produced) ;

10" Edition 345 Silberschatz, Galvinand Gagne ©2018

Buffering

0 Queue of messages attached to the link.
O Implemented in one of three ways
1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)
2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

rendezvous : i
finite: wiia

infinite: Tidia

o A0 Edition 347 Silberschatz, Galvinand Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

Synchronization

Message passing may be either blocking or non-blocking
= Blocking is considered synchronous

= Blocking send -- the sender is blocked until the message is
received

= Blocking receive -- the receiver is blocked until a message is
available

= Non-blocking is considered asynchronous

= Non-blocking send -- the sender sends the message and
continue

= Non-blocking receive -- the receiver receives:
= Avalid message, or
= Null message
= Different combinations possible
= If both send and receive are blocking, we have a rendezvous

rendezvous : ymiamy et

X

Concepts — 10" Edition 344 Silberschatz, Galvinand Gagne €2018

Consumer- Shared Memory

message next consumed;

while (true) {
receive (next_ consumed)

/* consume the item in next consumed */

P

D=

Concepts — 10" Edition 3.46 Silberschatz, Galvinand Gagne €2018

A

Examples of IPC Systems — Windows

0 Message-passing centric via advanced local procedure call
(LPC) facility
0 Only works between processes on the same system

0 Uses ports (like mailboxes) to establish and maintain
communication channels

0 Communication works as follows:

» The client opens a handle to the subsystem’s
connection port object.

» The client sends a connection request.

» The server creates two private communication ports
and returns the handle to one of them to the client.

» The client and server use the corresponding port handle
to send messages or callbacks and to listen for replies.

£D

Concepts — 10" Edition 3.48 Silberschatz, Galvinand Gagne €2018

711204341

Local Procedure Calls in Windows

Client Server

Connection

request Connection |__Handle
Port

Client
Communication Port
Server
Communication Port

Handle

Handle

Shared
Section Object
(> 256 bytes)
Sockets

O A socket is defined as an endpoint for communication

O Concatenation of IP address and port — a number included at start of

message packet to differentiate network services on a host
0 Ex. ftp port: 21, telnet port: 23 , http port: 80

O The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

0 Communication consists between a pair of sockets

O All ports below 1024 are well known, used for standard services
O Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running
A
100 Eaton a1 Slboschats, Galvinand Gagne €2018.
™ .
g Sockets in Java

import java.net.s;
import java.ie.®;

O Three types of sockets

public clase DateServer

0 Connection-oriented
(TCP) public static void main(String[] args) |

0 Connectionless (UDP) sock = new

/+ now listen for comnections /
while (true) {
Socket client = sack.accept();

0 MulticastSocket
class— data can be sent
to multiple recipients

PrintWriter pout = new

Printiriter(client.getOutputStrean(), true);

O Consider this “Date” server in /#+ urite the Date to the socket
Java:
/* close the socket and resume +/
/+ listening for conmections +/
client.close();

}

catch (IOException ioa) {
System.erz. println(ice);

10" Edition 3.53 Silberschatz, Galy

*/
pout.println(nev java.util.Date().toString(});

"

d Gagne ©2018

AIAITINYINNTABNNILART AULAINNAART 1.

=
™ s . .
%7 Communications in Client-Server Systems

0 Sockets
0 Remote Procedure Calls

Concepts - 10" Edition 3.50 Silberschatz, Galvinand Gagne €2018

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server
(161.25.19.8)

port: 1625

socket
(161.25.19.8:80)

port: 80

Concepts — 10" Edition 352 Silberschatz, Galvinand Gagne €2018

Sockets in Java

The equivalent Date client
import java.met.=;
import java.io.s;
public class DateClient
{
public static void main(String[] args) {

/+ make connection to server socket ¢/
Socket sock = new Socket("127.0.0.1",6013);

in = sock.getl
BufferedReader bin = new
BufferedReader (new InputStreamReader(in));

/* read the date from the socket +/

String line;

while ((line = bin.readLine()) != null)
System.out.println(line);

/% close the socket conmections/
sock.close();

}
catch (IDException ioe) {
Systen, src.printlatice);

}

}

Concepts - 10" Edition 354 Silberschatz, Galvinand Gagne €2018

711204341

Execution of RPC

client messages server

Remote Procedure Calls

0 Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

0 Again uses ports for service differentiation

O Stubs - client-side proxy for the actual procedure on the
server

From: clont
o: server
[Port: matchmaker|
o: addross
for RPC X
0 The client-side stub locates the server and marshalls the

parameters
0 The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the
server

0 On Windows, stub code compile from specification written in

From: client
Microsoft Interface Definition Language (MIDL) RPC @
<contents>

From: RPC
Port: P

To: client
Port: kernel
<output>

10" Edition 3.55 Silberschatz, Galvinand Gagne ©2018 Concepts — 10" Edition 3.56 Silberschatz, Galvinand Gagne €2018

End of Chapter 3

oncepts — 10° Edition Silberschatz, Galvin and Gagne €2018

AIAITINYINNTABNNILART AULAINNAART 1.

