Chapter 3. Processes
-] -]

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

Lt Chapter 3: Processes

Process Concept

Process Scheduling

Operations on Processes
Interprocess Communication

IPC in Shared-Memory Systems
IPC in Message-Passing Systems
Examples of IPC Systems

O O O o O o O O

Communication in Client-Server Systems

Operating System Concepts — 10t Edition 3.2 Silberschatz, Galvin and Gagne ©2018

. Objectives

0 Identify the separate components of a process and illustrate
how they are represented and scheduled in an operating
system.

0 Describe how processes are created and terminated in an
operating system, including developing programs using the
appropriate system calls that perform these operations.

0 Describe and contrast interprocess communication using
shared memory and message passing.

0 Describe client-server communication using sockets and
remote procedure calls.

£)
/54 ; "‘v\;

A

Operating System Concepts — 10t Edition 3.3 Silberschatz, Galvin and Gagne ©2018

g Process Concept

O An operating system executes a variety of programs that run as a
process.

0 Process — a program in execution; process execution must
progress in sequential fashion

O Multiple parts
0 The program code, also called text section

0 Current activity including program counter, processor
reqgisters

0 Stack containing temporary data
» Function parameters, return addresses, local variables
0 Data section containing global variables

0 Heap containing memory dynamically allocated during run time

Operating System Concepts — 10t Edition 3.4 Silberschatz, Galvin and Gagne ©2018

g Process Concept (Cont.)

0 Program is passive entity stored on disk (executable file);
process is active

0 Program becomes process when executable file loaded into
memory

0 Execution of program started via GUI mouse clicks, command
line entry of its name, etc

0 One program can be several processes
0 Consider multiple users executing the same program

Operating System Concepts — 10t Edition 3.5 Silberschatz, Galvin and Gagne ©2018

: ﬂ«ww.sk .
e Process in Memory

max

stack

heap

data

text

0
3 M
> = \;\/’
Ve
Operating System Concepts — 10t Edition 3.6

Silberschatz, Galvin and Gagne ©2018

f«ﬂd%
o Memory Layout of a C Program

\ S

#include <stdio.h>

high #include <stdlib.h>
argc, agrv
memory
stack int x;
P e— ((inty=15;
l , el I
int main(int argc, char *argv[])
{
L L — — L I:int *values;
heap - J int i;
—
uninitialized I I
data values = (int *)malloc (sizeof (int) *5) ;
initialized for(i = 0; 1 < 5; i++)
data values[i] = 1i;
low text return 0;
memory }

Operating System Concepts — 10t Edition 3.7 Silberschatz, Galvin and Gagne ©2018

o Process State

O As a process executes, it changes state
0 New: The process is being created
0 Running: Instructions are being executed
0 Waiting: The process is waiting for some event to occur
0 Ready: The process is waiting to be assigned to a processor
0 Terminated: The process has finished execution

Operating System Concepts — 10t Edition 3.8 Silberschatz, Galvin and Gagne ©2018

admitted interrupt exit

terminated

scheduler dispatch

I/O or event completion I/O or event wait

dispatch: sihmsawinms

N\

? v\;\”“\
{ WS
L A%

Operating System Concepts — 10t Edition 3.9 Silberschatz, Galvin and Gagne ©2018

-
D

u;;:* Process Control Block (PCB)

Information associated with each process
(also called task control block)

O Process state — running, waiting, etc
process state

0 Program counter — location of process number
instruction to next execute

program counter

0 CPU registers — contents of all process-
centric registers registers

0 CPU scheduling information- priorities,

scheduling queue pointers memory limits

. : list of open files
0 Memory-management information —

memory allocated to the process oo o

O Accounting information — CPU used,
clock time elapsed since start, time
limits

0 1/O status information — I/O devices
allocated to process, list of open files

A‘~l"~'\.".t“
- -

A

Operating System Concepts — 10t Edition 3.10 Silberschatz, Galvin and Gagne ©2018

g hreads

0 So far, process has a single thread of execution
0 Consider having multiple program counters per process
0 Multiple locations can execute at once
» Multiple threads of control -> threads

0 Must then have storage for thread details, multiple program
counters in PCB

Operating System Concepts — 10t Edition 3.11 Silberschatz, Galvin and Gagne ©2018

«4%7 Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

struct task struct *parent;/* this process s parent */
struct list head children; /* this process’ s children */
struct files struct *files;/* list of open files */

struct mm struct *mm; /* address space of this process */
i VR WA
struct task_struct struct task_struct struct task_struct
process information process information 5 & process information

current
(currently executing proccess)

Operating System Concepts — 10t Edition 3.12 Silberschatz, Galvin and Gagne ©2018

wSF Process Scheduling

0 Maximize CPU use, quickly switch processes onto CPU core

0 Process scheduler selects among available processes for
next execution on CPU core

0 Maintains scheduling queues of processes

0 Ready queue — set of all processes residing in main
memory, ready and waiting to execute

0 Wait queues — set of processes waiting for an event (i.e.
1/0O)

0 Processes migrate among the various queues

Operating System Concepts — 10t Edition 3.13 Silberschatz, Galvin and Gagne ©2018

iy Ready and Wait Queues
queue header PCB , PCB ,
ready head 4 3 N =
queue tail registers registers
PCB; PCB,, PCB,

wait head 7

Operating System Concepts — 10t Edition 3.14 Silberschatz, Galvin and Gagne ©2018

¥
1,

p—

“$»7 Representation of Process Scheduling

| readyqueue

I/O wait queue [*«<—— [|/Orequest
time.slice
expired
: hild
child enre [
termination —— cre?gtec(:?;ld [
wait queue P
interrupt interrupt wait for an
occurs wait queue interrupt
A
_ _ Each regular box represents a queue
Queueing-diagram
3.15 Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition

=

#

.

' 4

«4»” CPU Switch From Process to Process

il

A context switch occurs when the CPU
switches from one process to another.

process P,

operating system process P,

interrupt or system call

Y

executing ‘l /
T

save state into PCB,

reload state from PCB,

Y \

save state into PCB,

7

reload state from PCB,

executing | _\
v

Operating System Concepts — 10t Edition

3.16

1

-idle interrupt or system call

> idle

executing

~idle

Silberschatz, Galvin and Gagne ©2018

S5 Context Switch

0 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

0 Context of a process represented in the PCB

0 Context-switch time is overhead; the system does no useful
work while switching

0 The more complex the OS and the PCB =» the longer the
context switch

0 Time dependent on hardware support

0 Some hardware provides multiple sets of registers per CPU
=>» multiple contexts loaded at once

S
£ ‘i;_M
U 29X

Operating System Concepts — 10t Edition 3.17 Silberschatz, Galvin and Gagne ©2018

-\‘-&5
< Ww.&
i

o Multitasking in Mobile Systems

0 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

0 Due to screen real estate, user interface limits I0OS provides for a
0 Single foreground process- controlled via user interface

0 Multiple background processes— in memory, running, but not
on the display, and with limits

0 Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

0 Android runs foreground and background, with fewer limits
0 Background process uses a service to perform tasks

0 Service can keep running even if background process is
suspended

0 Service has no user interface, small memory use

1\

AN
Pa

5

A

Operating System Concepts — 10t Edition 3.18 Silberschatz, Galvin and Gagne ©2018

N

! m—d .
o S Operations on Processes

L

0 System must provide mechanisms for:
0 process creation
0 process termination

Q

%

Operating System Concepts — 10t Edition 3.19 Silberschatz, Galvin and Gagne ©2018

==\
3

v

g5 Process Creation

0 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

0 Generally, process identified and managed via a process
identifier (pid)

0 Resource sharing options
0 Parent and children share all resources
0 Children share subset of parent’ s resources
0 Parent and child share no resources
0 Execution options
0 Parent and children execute concurrently
0 Parent waits until children terminate

Operating System Concepts — 10t Edition 3.20 Silberschatz, Galvin and Gagne ©2018

wr & A Tree of Processes in Linux

logind
pid = 8415
bash
pid = 8416
ps vim
pid = 9298 pid = 9204

Operating System Concepts — 10t Edition

systemd
pid =1

python sshd
pid = 2808 pid = 3028
sshd
pid =3610
tcsh
pid = 4005

Q

%

3.21 Silberschatz, Galvin and Gagne ©2018

==\
4%

=

N '
G Process Creation (Cont.)

&

0 Address space
0 Child duplicate of parent
0 Child has a program loaded into it
O UNIX examples
0 fork () system call creates new process

0 exec () system call used after a fork () to replace the
process’ memory space with a new program

0 Parent process calls wait () for the child to terminate

parent (pid > 0)
» parent resumes

parent

child (pid = 0)

Operating System Concepts — 10t Edition 3.22 Silberschatz, Galvin and Gagne ©2018

e

=

C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf{stderr, "Fork Failed");
return 1;

¥

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

}

A DK
Operating System Concepts — 10t Edition 3.23 Silberschatz, Galvin and Gagne ©2018

=

>

A\,

Creating a Separate Process via Windows API

Operating System Concepts — 10t Edition

#include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (ksi, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (gpi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /#* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /# don’t inherit thread handle */
FALSE, /% disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,

&pi))
{

fprintf (stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

3.24

A 2%
Silberschatz, Galvin and Gagne ©2018

S Process Termination

O Process executes last statement and then asks the operating
system to delete it using the exit () system call.

0 Returns status data from child to parent (via wait ())
0 Process’ resources are deallocated by operating system

0 Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so:

0 Child has exceeded allocated resources
0 Task assigned to child is no longer required

0 The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

£)
/54 ; "‘v\;

A

Operating System Concepts — 10t Edition 3.25 Silberschatz, Galvin and Gagne ©2018

)‘,
/Ad

-

S Process Termination

0 Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

0 cascading termination. All children, grandchildren, etc. are
terminated.

0 The termination is initiated by the operating system.

0 The parent process may wait for termination of a child process by
using the wait () system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);
0 If no parent waiting (did not invoke wait ()) process is a zombie
0 If parent terminated without invoking wait , process is an orphan

A‘~l"~'\.".t“
S D)

A

Operating System Concepts — 10t Edition 3.26 Silberschatz, Galvin and Gagne ©2018

=

“#Android Process Importance Hierarchy

0 Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:

o [Foreground process

o Visible process

o Service process

o Background process

o Empty process

0 Android will begin terminating processes that are least important.

Operating System Concepts — 10t Edition 3.27 Silberschatz, Galvin and Gagne ©2018

~4$»/ Multiprocess Architecture — Chrome Browser

0 Many web browsers ran as single process (some still do)
0 If one web site causes trouble, entire browser can hang or crash

0 Google Chrome Browser is multiprocess with 3 different types of
processes:

0 Browser process manages user interface, disk and network 1/O

0 Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network /O, minimizing
effect of security exploits

0 Plug-in process for each type of plug-in

G Chrome Browser 0S-BOOK.COM X Wi|ey: Operating System ¢ X sos BBC - Homepage X

& https:// oogle.com/chrome/bro r/desktop/
c chrome DOWNLOAD ~ SETUP ~

Each tab represents a separate process.

CROMEBOOKS ~ CHROMECAST ~

Operating System Concepts — 10t Edition 3.28 Silberschatz, Galvin and Gagne ©2018

¥
1,

4% Interprocess Communication

O Processes within a system may be independent or cooperating

0 Cooperating process can affect or be affected by other processes,
including sharing data

O Reasons for cooperating processes:

0 Information sharing

0 Computation speedup

0 Modularity

0 Convenience
0 Cooperating processes need interprocess communication (IPC)
0 Two models of IPC

0 Shared memory

0 Message passing

Operating System Concepts — 10t Edition 3.29 Silberschatz, Galvin and Gagne ©2018

4
#

,«ffm"'.‘ " I
S Communications Models
(a) Shared memory. (b) Message passing.
I: process A process A
shared memory :I process B
process B

message queue

—>m0 m1 m2 m3 mn<—
kernel
kernel
(a) (b)

Operating System Concepts — 10t Edition 3.30 Silberschatz, Galvin and Gagne ©2018

55 Cooperating Processes

O Independent process cannot affect or be affected by the execution
of another process

0 Cooperating process can affect or be affected by the execution of
another process

0 Advantages of process cooperation
0 Information sharing
0 Computation speed-up
0 Modularity
0 Convenience

Operating System Concepts — 10t Edition 3.31 Silberschatz, Galvin and Gagne ©2018

o
Y,

/“mj
‘*m?{,f—{ Producer-Consumer Problem

0 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

pProcess

0 unbounded-buffer places no practical limit on the size
of the buffer

0 bounded-buffer assumes that there is a fixed buffer
size

Operating System Concepts — 10t Edition 3.32 Silberschatz, Galvin and Gagne ©2018

p— L
W«q»? Interprocess Communication — Shared Memory

7'

O An area of memory shared among the processes that wish
to communicate

0 The communication is under the control of the users
processes not the operating system.

O Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

Operating System Concepts — 10t Edition 3.33 Silberschatz, Galvin and Gagne ©2018

=

-

~4»/ Bounded-Buffer — Shared-Memory Solution

0 Shared data
#define BUFFER SIZE 10

typedef struct { 01 2 3 456 7 89

} item;

buffer

item buffer[BUFFER;SIZE];
int in = 0;

int out = 0;

0 Solution is correct, but can only use BUFFER _SIZE-1 elements

in :point the next free position in the buffer
out: point the first full position in the buffer

buffer empty when in==out
buffer full when ((in+1) % BUFFER_SIZE)== out)
% is modulus operator Ex. 3 %10 =3

T\ ...‘ \
;%ﬁg§35
y o
/ (4
U ‘E

Operating System Concepts — 10t Edition 3.34 Silberschatz, Galvin and Gagne ©2018

BL N

p—
“$»” Producer Process — Shared Memory

01 2 3 456 7 829

item next_produced;

ffer
while (true) { bu
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out); /* do nothing- no free
buffers */

buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

in :point the next free position in the buffer
out: point the first full position in the buffer

buffer empty when in==out
buffer full when ((in+1) % BUFFER_SIZE)== out)
% is modulus operator Ex. 3 %10 =3

Operating System Concepts — 10t Edition 3.35 Silberschatz, Galvin and Gagne ©2018

&f’;;?(}:onsumer Process — Shared Memory

01 2 3 456 7 809

item next_consumed;

buffer
while (true) {
while (in == out); /* do nothing -nothing to consume*/

/* remove an item from the buffer */
next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

in :point the next free position in the buffer
out: point the first full position in the buffer

buffer empty when in==out

Operating System Concepts — 10t Edition 3.36 Silberschatz, Galvin and Gagne ©2018

4§’ Interprocess Communication — Message Passing

0 Mechanism for processes to communicate and to synchronize
their actions

O Message system — processes communicate with each other
without resorting to shared variables

0 IPC facility provides two operations:
0 send(message)
0 receive(message)

0 The message size is either fixed or variable

e —

N
A
. e)
P o
> ‘u\\\\
“ 5
“ P

Operating System Concepts — 10t Edition 3.37 Silberschatz, Galvin and Gagne ©2018

Ad
w

!‘_‘1.% v)

Message Passing (Cont.)

O If processes P and Q wish to communicate, they need to:

d
d

Establish a communication link between them
Exchange messages via send/receive

O Implementation issues:

d
d
d

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?

A‘~l"~'\.".t“
S D)

A

Operating System Concepts — 10t Edition 3.38 Silberschatz, Galvin and Gagne ©2018

s 'l Message Passing (Cont.)

0 Implementation of communication link
0 Physical:
» Shared memory
» Hardware bus
» Network
0 Logical:
» Direct or indirect
» Synchronous or asynchronous
» Automatic or explicit buffering

Operating System Concepts — 10t Edition 3.39 Silberschatz, Galvin and Gagne ©2018

=
- ﬁmi

S Direct Communication

O Processes must name each other explicitly:
0 send (P, message) — send a message to process P

0 receive(Q, message) — receive a message from process Q

O Properties of communication link
0 Links are established automatically

0 A link is associated with exactly one pair of communicating
processes

0 Between each pair there exists exactly one link
0 The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 10t Edition 3.40 Silberschatz, Galvin and Gagne ©2018

=

-

g5 Indirect Communication

0 Messages are directed and received from mailboxes (also referred
to as ports)

0 Each mailbox has a unique id
0 Processes can communicate only if they share a mailbox
0 Properties of communication link
0 Link established only if processes share a common mailbox
0 A link may be associated with many processes
0 Each pair of processes may share several communication links
0 Link may be unidirectional or bi-directional

Operating System Concepts — 10t Edition 3.41 Silberschatz, Galvin and Gagne ©2018

> Indirect Communication

0 Operations
0 create a new mailbox (port)
0 send and receive messages through mailbox
0 destroy a mailbox
0 Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts — 10t Edition 3.42 Silberschatz, Galvin and Gagne ©2018

=

m_ml

e Indirect Communication

0 Mailbox sharing
o P4, P,, and P; share mailbox A
o0 Py, sends; P, and P, receive
0 Who gets the message”?
0 Solutions
0 Allow a link to be associated with at most two processes

0 Allow only one process at a time to execute a receive
operation

0 Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Operating System Concepts — 10t Edition 3.43 Silberschatz, Galvin and Gagne ©2018

=

-

T Synchronization

Message passing may be either blocking or non-blocking
= Blocking is considered synchronous

= Blocking send -- the sender is blocked until the message is
received

= Blocking receive -- the receiver is blocked until a message is
available

= Non-blocking is considered asynchronous

= Non-blocking send -- the sender sends the message and
continue

= Non-blocking receive -- the receiver receives:
= Avalid message, or
= Null message
= Different combinations possible
= If both send and receive are blocking, we have a rendezvous

rendezvous : miawy

Operating System Concepts — 10t Edition 3.44 Silberschatz, Galvin and Gagne ©2018

o
7,

/“ml
“%7/ Producer — Shared Memory

message next produced;

while (true) {
/* produce an item in next produced */

send (next produced) ;

Operating System Concepts — 10t Edition 3.45 Silberschatz, Galvin and Gagne ©2018

“$7’ Consumer— Shared Memory

message next consumed;

while (true) {
receive (next consumed)

/* consume the item in next consumed */

Operating System Concepts — 10t Edition 3.46 Silberschatz, Galvin and Gagne ©2018

=

= ﬁm.‘\

g Buffering

O Queue of messages attached to the link.
O Implemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

rendezvous : miawy
finite: i
infinite: lisa

Operating System Concepts — 10t Edition 3.47 Silberschatz, Galvin and Gagne ©2018

-
D

— .
H.,,w Examples of IPC Systems — Windows

0 Message-passing centric via advanced local procedure call
(LPC) facility

0 Only works between processes on the same system

0 Uses ports (like mailboxes) to establish and maintain
communication channels

0 Communication works as follows:

» The client opens a handle to the subsystem’s
connection port object.

» The client sends a connection request.

» The server creates two private communication ports
and returns the handle to one of them to the client.

» The client and server use the corresponding port handle
to send messages or callbacks and to listen for replies.

A‘~l"~'\.".t“
S D)

A

Operating System Concepts — 10t Edition 3.48 Silberschatz, Galvin and Gagne ©2018

“§»’ Local Procedure Calls in Windows

Client

Server

Connection
request Connection Handle
Port
Handle Client
Communication Port
Server Handle

Communication Port

Shared

<«—>»{ Section Object [«———>

Operating System Concepts — 10t Edition

(> 256 bytes)

3.49

Silberschatz, Galvin and Gagne ©2018

g% Communications in Client-Server Systems

0 Sockets
0 Remote Procedure Calls

‘ S

<

A
: D)
A ﬁ "

Operating System Concepts — 10t Edition 3.50 Silberschatz, Galvin and Gagne ©2018

)‘)
v

f,

<7 Sockets

0 A socket is defined as an endpoint for communication

0 Concatenation of IP address and port — a number included at start of
message packet to differentiate network services on a host

0 Ex. ftp port: 21, telnet port: 23 , http port: 80

0 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
0 Communication consists between a pair of sockets
0 All ports below 1024 are well known, used for standard services

0 Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

A‘~l"~'\.".t“
S D)

A

Operating System Concepts — 10t Edition 3.51 Silberschatz, Galvin and Gagne ©2018

G5 Socket Communication
host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server
(161.25.19.8)

port: 1625

socket
(161.25.19.8:80)

port: 80

Operating System Concepts — 10t Edition 3.52 Silberschatz, Galvin and Gagne ©2018

G5 Sockets in Java

import java.net.*;

O Three types of sockets il
0 Connection-oriented ;{mblic class DateServer
(TCP) public static void main(String[] args) {
0 Connectionless (UDP) trySe{rverSocket sock = new ServerSocket(6013);
0 MulticastSocket /* now listen for connections */
class— data can be sent WhiSloeck(ettrucel)ie{nt = sock.accept() ;

to multiple recipients

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */

0 Consider this "Date” server in pout.println(new java.util.Date().toString());

Java:

/* close the socket and resume */
/* listening for connections */
client.close();

}

catch (IOException ioe) {
System.err.println(ioe);
}

}
}

‘/L“ ‘Et 5

Operating System Concepts — 10t Edition 3.53 Silberschatz, Galvin and Gagne ©2018

wr & Sockets in Java

The equivalent Date client

import java.net.x*;
import java.io.x*;

public class DateClient

{

public static void main(String[] args) {
try {
/* make connection to server socket */
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream() ;
BufferedReader bin = new
BufferedReader (new InputStreamReader(in));

/* read the date from the socket */

String line;

while ((line = bin.readLine()) != null)
System.out.println(line);

/* close the socket connectionx*/
sock.close();

}

catch (IOException ioe) {
System.err.println(ioe);

}
}
}

Operating System Concepts — 10t Edition 3.54 Silberschatz, Galvin and Gagne ©2018

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

0 Again uses ports for service differentiation

Stubs - client-side proxy for the actual procedure on the
server

The client-side stub locates the server and marshalls the
parameters

The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

=\

," ¢
WS
“ A48

Operating System Concepts — 10t Edition 3.55 Silberschatz, Galvin and Gagne ©2018

Execution of RPC

‘tr:’s‘“fﬁ'f v/

v
L\, client messages server
user calls kernel
to send RPC
message to
procedure X
From: client
kernel sends Tos corver matchmaker
message to Port: matchmaker _| receives
matchmaker to Re: address | message, looks
find port number fo;' RPC X up answer
A\ 4
From: server
kernel places To: client matchmaker
port P in user Port: kernel replies to client
RPC message Re: RPC X with port P
Rout: P
From: client daemon
kernel sends To: server _| listening to
RPC Port: port P "| port P receives
<contents> message
A\ 4
From: RPC daemon
kernel receives Port: P processes
reply, passes To: client request and
it to user Port: kernel processes send
<output> output

Operating System Concepts — 10t Edition

3.56

Silberschatz, Galvin and Gagne ©2018

End of Chapter 3

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

