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&/%,,.-/ Obj ectives

® To describe the benefits of a virtual memory system

® To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames

m  Apply the FIFO, optimal, and LRU page-replacement algorithms.
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G Background

m Code needs to be in memory to execute, but entire program
rarely used

e Error code, unusual routines, large data structures
Entire program code not needed at same time
Consider ability to execute partially-loaded program
e Program no longer constrained by limits of physical memory

e Each program takes less memory while running -> more
programs run at the same time

» Increased CPU utilization and throughput with no
Increase in response time or turnaround time

e Less I/O needed to load or swap programs into memory ->
each user program runs faster
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> & Background

m Virtual memory — separation of user logical memory from physical memory.

e Only part of the program needs to be in memory for execution

e Logical address space can therefore be much larger than physical address
space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

e More programs running concurrently

e Less I/O needed to load or swap processes

m Virtual address space — logical view of how process is stored in memory
e Usually start at address 0, contiguous addresses until end of space
e Meanwhile, physical memory organized in page frames
e MMU must map logical to physical

® Virtual memory can be implemented via:

e Demand paging
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e Demand segmentation
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Q“”@”thual Memory That is Larger Than Physical Memory

page 0

page 1

page 2

EER

N EEE

\

EER

[\

—l i B

page v

virtual
memory

Operating System Concepts — 8t" Edition

memory
map

EEBR

physical
memory

8.6

Silberschatz, Galvin and Gagne ©2009



7 Virtual-address Space
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‘\-*‘?:’Shared Library Using Virtual Memory
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& Demand Paging

(msdaass Paging munnudesmsiifosve )

® Bring a page into memory only when it is needed
e Less I/O needed
e Less memory needed
e [Faster response
e More users

m Page is needed = reference to it (windesnsld page TWsudumisis page iidesnms)
e invalid reference = abort maddumisligndeslionian)

e not-in-memory = bring to memory (wingrudqluiily memory liiudun1ily memory)

B Lazy swapper — never swaps a page into memory unless page will be needed
e Swapper that deals with pages is a pager
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r & Valid-Invalid Bit

m  With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

m |[nitially valid—invalid bit is set to i on all entries
m Example of a page table snapshot:

Frame # valid-invalid bit
\/
Vv
\/
V
i
page fault
i
i
page table

® During address translation, if valid—invalid bit in page table entry

) Y a a Y A ' Y Ay
Is| = page fault (fﬂﬁ'f]'N'ENNﬂi’iﬂii’iiﬂllﬂJWUWU'iﬂ@@Qﬂiﬁ).
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Page Fault

iefimsonsdsnanthwse linuwiniidesmslumizannudman (page fault) szfiduneuduiiumsasii
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If there is a reference to a page, first reference to that page will
trap to operating system:

page fault
Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory
Get empty frame
Swap page into frame
Reset tables
Set validation bit = v
Restart the instruction that caused the page fault
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&fa;;,;.,r{ Page Fault (Cont.)
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® Restart instruction (vhasangai lasihwndiaiga wie dennyanina page fault yu)

e block move

e auto increment/decrement location
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Steps in Handling a Page Fault
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#”What happens if there is no free frame?
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4

m Page replacement — find some page in memory, but not
really in use, swap it out

e algorithm

e performance — want an algorithm which will result in
minimum number of page faults

m Same page may be brought into memory several times
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& Page Replacement

m Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory
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“$77  Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the process
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g Page Replacement
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“$7” Page Replacement Algorithms

m Want lowest page-fault rate

m Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

®m [In all our examples, the reference string is

1,2,3,4,1,2,5,1,2,3,4,5
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raph of Page Faults Versus The Number of Frames
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“3%77 First-In-First-Out (FIFO) Algorithm

m Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

1114 5

2 12| 1 3 9page faults
3 13| 2 4

m 4 frames

1/1(5 4

2 12| 1 5 10page faults
3132

4 14 3

m Belady’s Anomaly: more frames = more page faults
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> o FIFO Page Replacement
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“»”"FIFO lllustrating Belady’s Anomaly
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- Optimal Algorithm

m Replace page that will not be used for longest period of time
(sedlu list wes reference string dallueinnnd page ladmnuitzgnlyan s:lau replace )

m 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

1 4

6 page faults

2
3
4

m How do you know this? | i make sence msliaunsedounala

m Used for measuring how well your algorithm performs
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“$77  Optimal Page Replacement
reference string

/7 012 03042 30321201701
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page frames
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*»'Least Recently Used (LRU) Algorithm

aesdoundulflueiin page lalilggnlfamnuiigaszgn replace)
m Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

1

1|5
2|2
4 || 4
3|3

O N
w | O NP

2
3
4

m  Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change
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r & LRU Page Replacement
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> & LRU Algorithm (Cont.)

®  Counter implementation

e Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to find smallest
value

» Search through table needed

m Stack implementation — keep a stack of page numbers in a double link form:

e Page referenced:
» move it to the top
» requires 6 pointers to be changed

e No search for replacement

B LRU and OPT are cases of stack algorithms that don’ t have Belady’ s
Anomaly
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?ﬁJse Of A Stack to Record The Most Recent Page References

reference string
4707101212@12

2 7 11
a b
1 2
0 ]
7 0
4 4
stack stack
before after
a b

W\
\ u\\
. = 3,
¥

Operating System Concepts — 8t Edition 8.31 Silberschatz, Galvin and Gagne ©2009




=

( .

“»”" LRU Approximation Algorithms

B LRU needs special hardware and still slow

m Reference bit
e With each page associate a bit, initially = O
e When page is referenced bit setto 1
e Replace any with reference bit = O (if one exists)
» We do not know the order, however
m Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Clock replacement
e If page to be replaced has
» Reference bit = 0 -> replace it
» reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules
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M? ‘Second-Chance (clock) Page-Replacement Algorithm

=

reference pages reference pages
bits f\ bits
0 0
v v
0 0
v v
next i 0
victim
v v
1 0
v v
0 = 0
1 1
v v
1 1
circular queue of pages circular queue of pages
(a) (b)

by
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- Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

m LFU Algorithm: replaces page with smallest count

m MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

LFU : Least Frequently Used (amuilumsgnl¥ioaiign)
MFU: Most Frequently Used @walumsgalfanniga)
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‘ww-f Allocation of Frames

B Each process needs minimum number of pages
m Example: IBM 370 — 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to
®m Two major allocation schemes
e fixed allocation
e priority allocation

e —

A
AN\
> 2 |
L «:s\ o\
7 'w\\l\‘
) 5
“ P

Operating System Concepts — 8t Edition 8.35 Silberschatz, Galvin and Gagne ©2009




=

- ﬁm.‘\

& Fixed Allocation

m Equal allocation — For example, if there are 100 frames and 5 processes,
give each process 20 frames. ( 1éan (frame / process) = (100 /5)

m Proportional allocation — Allocate according to the size of process

— S; =size of process p,
- S=2X5
— m =totalnumber of frames

. Si
— a; =allocation for p, = §X m

P.
m = 64 !
s, =10 / P
s, =127 < 2
P, 4 5 pages frame a, = 10 6a~5
137
P 14 59 pages frame a, = 2! . 64 ~ 59
2 PeS 2137 P 5
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o Priority Allocation

m Use a proportional allocation scheme using priorities rather than
size

m If process P; generates a page fault,
e select for replacement one of its frames

e select for replacement a frame from a process with lower
priority number
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“$77  Global vs. Local Allocation

B Global replacement — process selects a replacement frame
from the set of all frames; one process can take a frame from
another

m [ocal replacement — each process selects from only its own
set of allocated frames

Silberschatz, Galvin and Gagne ©2009
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Page-Fault Frequency Scheme

m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame

e If actual rate too high, process gains frame

page-fault rate

number of frames

Silberschatz, Galvin and Gagne ©2009
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2 Other Issues -- Prepaging
® Prepaging
e To reduce the large number of page faults that occurs at process
startup

e Prepage all or some of the pages a process will need, before
they are referenced

e But if prepaged pages are unused, I/O and memory was wasted
e Assume s pages are prepaged and a of the pages is used

» Is cost of s * a save pages faults > or < than the cost of

prepaging
s * (1- a) unnecessary pages?

» @ near zero = prepaging loses

S
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> & Other Issues — Page Size

m Page size selection must take into consideration:

(definsanvinaves page size dudsadundn)

e fragmentation
e table size -> winwnapage idn fizdosdsi page table filugj

e |/O overhead -> siivsaniision page fault
e |ocality
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r &l Other Issues — TLB Reach

® TLB Reach - The amount of memory accessible from the TLB
TLB Reach = (TLB Size) X (Page Size)
|deally, the working set of each process is stored in the TLB
e Otherwise there is a high degree of page faults
® Increase the Page Size

e This may lead to an increase in fragmentation as not all
applications require a large page size

® Provide Multiple Page Sizes

e This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

TLB : Translation Look-aside Buffer
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Other Issues — Program Structure

| $198a row, j $1eds column

B Program structure
e ITnt[128,128] data;

e Eachrow is stored in one page
e Program 1

for (j = 0; j <128; j++)
for (1 = 0; 1 < 128; i++)
data[i,j] = O;

128 x 128 = 16,384 page faults
e Program 2
for (i = 0; 1 < 128; i++)
for (J = 0; j < 128; j++)
data[i,j] = O;

128 page faults

Operating System Concepts — 8t Edition 8.43 Silberschatz, Galvin and Gagne ©2009




“%7/  Other Issues — I/0 interlock

m |/O Interlock — Pages must sometimes be locked into memory

m Consider I/O - Pages that are used for copying a file from a
device must be locked from being selected for eviction by a

page replacement algorithm
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g"/G?*)"f{e<'alson Why Frames Used For I/O Must Be In Memory

buffer i
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“»77  Operating System Examples

L\

® Windows XP

m Solaris

S
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Windows XP

Operating System Concepts — 8" Edition 8.47

Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

Processes are assigned working set minimum and working set
maximum

Working set minimum is the minimum number of pages the process is
guaranteed to have in memory

A process may be assigned as many pages up to its working set maximum

When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount of

free memory

Working set trimming removes pages from processes that have pages in
excess of their working set minimum

S
y o

4 <

7 2%

Silberschatz, Galvin and Gagne ©2009



> Solaris

Maintains a list of free pages to assign faulting processes

Lotsfree — threshold parameter (amount of free memory) to begin paging
Desfree — threshold parameter to increasing paging

Minfree — threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

m Pageout is called more frequently depending upon the amount of free
memory available
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r & Solaris 2 Page Scanner

8192 |
fastscan

scan rate

100
slowscan

minfree desfree lotsfree
amount of free memory

L 4
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End of Chapter 8
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