Chapter 8:
Virtual-Memory Management

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2009

‘m/f,x A .
#”7 Chapter 8: Virtual-Memory Management

Background

Demand Paging
Copy-on-Write

Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations

Operating-System Examples

Operating System Concepts — 8t Edition 8.2 Silberschatz, Galvin and Gagne ©2009

&/%,,.-/ Obj ectives

® To describe the benefits of a virtual memory system

® To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames

m Apply the FIFO, optimal, and LRU page-replacement algorithms.

\¥

ALY
v

|
: ﬂ’};’,} M
W

: £
“ A3

\\

e —

Operating System Concepts — 8t Edition 8.3 Silberschatz, Galvin and Gagne ©2009

G Background

m Code needs to be in memory to execute, but entire program
rarely used

e Error code, unusual routines, large data structures
Entire program code not needed at same time
Consider ability to execute partially-loaded program
e Program no longer constrained by limits of physical memory

e Each program takes less memory while running -> more
programs run at the same time

» Increased CPU utilization and throughput with no
Increase in response time or turnaround time

e Less I/O needed to load or swap programs into memory ->
each user program runs faster

e
=N
194 ”‘v\}

A

Operating System Concepts — 8t Edition 8.4 Silberschatz, Galvin and Gagne ©2009

[”W“i |
> & Background

m Virtual memory — separation of user logical memory from physical memory.

e Only part of the program needs to be in memory for execution

e Logical address space can therefore be much larger than physical address
space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

e More programs running concurrently

e Less I/O needed to load or swap processes

m Virtual address space — logical view of how process is stored in memory
e Usually start at address 0, contiguous addresses until end of space
e Meanwhile, physical memory organized in page frames
e MMU must map logical to physical

® Virtual memory can be implemented via:

e Demand paging

e
=N
194 ”‘v\}

A

e Demand segmentation

Operating System Concepts — 8t Edition 8.5 Silberschatz, Galvin and Gagne ©2009

Q“”@”thual Memory That is Larger Than Physical Memory

page 0

page 1

page 2

EER

N EEE

\

EER

[\

—l i B

page v

virtual
memory

Operating System Concepts — 8t" Edition

memory
map

EEBR

physical
memory

8.6

Silberschatz, Galvin and Gagne ©2009

7 Virtual-address Space

Max

stack

heap

data

code

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8t" Edition 8.7

‘\-*‘?:’Shared Library Using Virtual Memory

stack

stack

shared library

shared
pages

shared library

heap

data

code

Operating System Concepts — 8" Edition

8.8

heap

data

code

Ay
Silberschatz, Galvin and Gagne ©200

=

-

o) '
& Demand Paging

(msdaass Paging munnudesmsiifosve)

® Bring a page into memory only when it is needed
e Less I/O needed
e Less memory needed
e [Faster response
e More users

m Page is needed = reference to it (windesnsld page TWsudumisis page iidesnms)
e invalid reference = abort maddumisligndeslionian)

e not-in-memory = bring to memory (wingrudqluiily memory liiudun1ily memory)

B Lazy swapper — never swaps a page into memory unless page will be needed
e Swapper that deals with pages is a pager

Operating System Concepts — 8t Edition 8.9 Silberschatz, Galvin and Gagne ©2009

(™

s’“{%;ﬁffansfer of a Paged Memory to Contiguous Disk Space

1 pager udide page

wh (Swap in) wieesn (Swap out)

Operating System Concepts — 8t" Edition

program
A

program
B

swap out

<
-

o[]1[]2[]8[]

e

(™ swap in

+01 503 61 703

8] o[o[11 []
12[13 J14[15[]

16|:|17|;|18|_;|19|_;|

main
memory

8.10

20[J21 [J22[]23[]

-

Silberschatz, Galvin and Gagne ©2009

r & Valid-Invalid Bit

m With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

m |[nitially valid—invalid bit is set to i on all entries
m Example of a page table snapshot:

Frame # valid-invalid bit
\/
Vv
\/
V
i
page fault
i
i
page table

® During address translation, if valid—invalid bit in page table entry

) Y a a Y A ' Y Ay
Is| = page fault (fﬂﬁ'f]'N'ENNﬂi’iﬂii’iiﬂllﬂJWUWU'iﬂ@@Qﬂiﬁ).

Operating System Concepts — 8t Edition 8.11 Silberschatz, Galvin and Gagne ©2009

0
1
0 A 2
C ? valid;)invalid ,
it R R
> : frameo\4 /) : v
|v
3 D il il > s H N
o e O] ee] | O)
5 F 4 i 7
59 |v @ EI
d 6| |i 8
7 H 74 i 9 F IEI [EI
S page table
ety " HE N
11
- e
12
13
14
15

physical memory

Operating System Concepts — 8t Edition 8.12 Silberschatz, Galvin and Gagne ©2009

(

=
_,f.m.k
w o

Page Fault

iefimsonsdsnanthwse linuwiniidesmslumizannudman (page fault) szfiduneuduiiumsasii

o a0k~ WD

If there is a reference to a page, first reference to that page will
trap to operating system:

page fault
Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory
Get empty frame
Swap page into frame
Reset tables
Set validation bit = v
Restart the instruction that caused the page fault

£ ‘\;1 \\;\‘g

a

A48

e —

Operating System Concepts — 8t Edition 8.13 Silberschatz, Galvin and Gagne ©2009

&fa;;,;.,r{ Page Fault (Cont.)

v
=}

® Restart instruction (vhasangai lasihwndiaiga wie dennyanina page fault yu)

e block move

e auto increment/decrement location

Operating System Concepts — 8t Edition 8.14 Silberschatz, Galvin and Gagne ©2009

Steps in Handling a Page Fault

page is on
backing store

operating
system
reference
trap
load M |« | i
restart page table
instruction
free frame |« — 4
reset page bring in
table missing page
physical
memory

. "?- _‘;\/,
bR

A A
Operating System Concepts — 8t Edition 8.15 Silberschatz, Galvin and Gagne ©2009

SO

=

(™
#”What happens if there is no free frame?

\

4

m Page replacement — find some page in memory, but not
really in use, swap it out

e algorithm

e performance — want an algorithm which will result in
minimum number of page faults

m Same page may be brought into memory several times

Operating System Concepts — 8t Edition 8.16 Silberschatz, Galvin and Gagne ©2009

& Page Replacement

m Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

Operating System Concepts — 8t Edition 8.17 Silberschatz, Galvin and Gagne ©2009

“$77 Need For Page Replacement

valid—invalid
0 H frame bit 0 | monitor
1| load M ™ ' 1 l /—\
PC —> 0|V
2 [114V 2| D
2|15 |v
Gl ™ >—> 3l i 3 H B
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
valid—invalid 7 E @
0 A f bit
e N @ physical
1 B 0l 6 |v memory v
5 D 1 i
212 |v
3 E 3 7 v

logical memory page table
for user 2 for user 2

Operating System Concepts — 8t Edition 8.18 Silberschatz, Galvin and Gagne ©2009

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the process

Operating System Concepts — 8t Edition 8.19 Silberschatz, Galvin and Gagne ©2009

g Page Replacement

frame valid—invalid bit

Ny i <

swap out
0 |i to invalid @ page
f v e
@ f| victim
reset page
table for
Ragoitane new page @ swap
desired
page in

physical
memory

Operating System Concepts — 8t Edition 8.20 Silberschatz, Galvin and Gagne ©2009

4
Y,

,«.".‘»Tf'"’“'.“ i
“$7” Page Replacement Algorithms

m Want lowest page-fault rate

m Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

®m [In all our examples, the reference string is

1,2,3,4,1,2,5,1,2,3,4,5

%

< \\L“' o\

P — \
W =N
- \w
“ P

Operating System Concepts — 8t Edition 8.21 Silberschatz, Galvin and Gagne ©2009

raph of Page Faults Versus The Number of Frames

16
o 14 \
S o\
O]
@ 10
o
S 8
®
_g 6 \

2

1 2 3 4 < 6

number of frames

Operating System Concepts — 8 Edition 8.22 Silberschatz, Galvin and Gagne ©2009

N

_—

“3%77 First-In-First-Out (FIFO) Algorithm

m Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

1114 5

2 12| 1 3 9page faults
3 13| 2 4

m 4 frames

1/1(5 4

2 12| 1 5 10page faults
3132

4 14 3

m Belady’s Anomaly: more frames = more page faults

e —

N
ny AN
3 "
A e %!
Ap%\\\
"
“(
%
“ P

Operating System Concepts — 8t Edition 8.23 Silberschatz, Galvin and Gagne ©2009

¥
1,

> o FIFO Page Replacement

1 0 agudqrlu memory vslidesldasdoyaulnusn
1¢hina page fault sy page O

reference string /

701 2(0)3 04 230382120170 1
7| 7] [7] [2]) l2| |2] |4] [4] |4] [0 ol [o 7| 7] |7]
o| |o] [0/« 3] [3] [3] [2] [2] |2 1| |4 1| lo] o
1| 11| [1] o] |o] [o] (3] |3 3 |2 2| 2| |1

page frames

iie physical memory 3 frames uas14 reference string
awdmnuald swina page fault wiwua 15 page faults

« afwisn'lifl page o4lu Physical Memory s=iiia page fault

AN
O v,\“'“\
B
- ‘*\\‘,\
WS
“d A%

Operating System Concepts — 8t Edition 8.24 Silberschatz, Galvin and Gagne ©2009

s ¢
“»”"FIFO lllustrating Belady’s Anomaly

L

—
(0))

—_ ok
nN s~
o

N
J

number of page faults

N~ OO @

1 2 3 4 5 6 7
number of frames

Belady’s Anomoly : flumamisaffiilesi Physical Memory i
uszifia page fault wiviude (udesniudmsu FIFO Algorithm) —

Operating System Concepts — 8t Edition 8.25 Silberschatz, Galvin and Gagne ©2009

- Optimal Algorithm

m Replace page that will not be used for longest period of time
(sedlu list wes reference string dallueinnnd page ladmnuitzgnlyan s:lau replace)

m 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

1 4

6 page faults

2
3
4

m How do you know this? | i make sence msliaunsedounala

m Used for measuring how well your algorithm performs

e —

N

ny AN
> I |

A e %!

Ap%\\\

P e/

“(

5

“ A48

Operating System Concepts — 8t Edition 8.26 Silberschatz, Galvin and Gagne ©2009

WJ@:\

“$77 Optimal Page Replacement
reference string

/7 012 03042 30321201701

71 171 [7] l2] |2 2 2 2 7
o o] o] o 4 0 0 0
1| (1 3 3 3 1 1

page frames

Aan page fault 2?27?

Operating System Concepts — 8t Edition 8.27 Silberschatz, Galvin and Gagne ©2009

N

A
SN
Whi

*»'Least Recently Used (LRU) Algorithm

aesdoundulflueiin page lalilggnlfamnuiigaszgn replace)
m Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

1

1|5
2|2
4 || 4
3|3

O N
w | O NP

2
3
4

m Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

3 ~l ‘\.‘ ‘
.w_,./'/‘ /.S; \\!
154 "‘v\}
{ -4&.:)

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 8.28

y

™
r & LRU Page Replacement

~E
a
l-
|
| Q¢

reference string
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7]
B

7]
L
]

[=[o]m]
EEIS
ESEIES
EEES

ESIEEIES
(v|w]o]
I
EEIE
=

page frames

Aan page fault 2?7?

N\

? v\;\”“\
SASY
I ¥

L A

Operating System Concepts — 8t Edition 8.29 Silberschatz, Galvin and Gagne ©2009

,_ﬁﬂ’?»"“‘-’-l

> & LRU Algorithm (Cont.)

® Counter implementation

e Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to find smallest
value

» Search through table needed

m Stack implementation — keep a stack of page numbers in a double link form:

e Page referenced:
» move it to the top
» requires 6 pointers to be changed

e No search for replacement

B LRU and OPT are cases of stack algorithms that don’ t have Belady’ s
Anomaly

«.‘..’ '-h‘ ‘l
y W
U 29X

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 8.30

,»?Q:\

?ﬁJse Of A Stack to Record The Most Recent Page References

reference string
4707101212@12

2 7 11
a b
1 2
0]
7 0
4 4
stack stack
before after
a b

W\
\ u\\
. = 3,
¥

Operating System Concepts — 8t Edition 8.31 Silberschatz, Galvin and Gagne ©2009

=

(.

“»”" LRU Approximation Algorithms

B LRU needs special hardware and still slow

m Reference bit
e With each page associate a bit, initially = O
e When page is referenced bit setto 1
e Replace any with reference bit = O (if one exists)
» We do not know the order, however
m Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Clock replacement
e If page to be replaced has
» Reference bit = 0 -> replace it
» reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules

e —

T\ " " \
£ V‘»f; |
y o
/ (4
« ‘E P

Operating System Concepts — 8t Edition 8.32 Silberschatz, Galvin and Gagne ©2009

M? ‘Second-Chance (clock) Page-Replacement Algorithm

=

reference pages reference pages
bits f\ bits
0 0
v v
0 0
v v
next i 0
victim
v v
1 0
v v
0 = 0
1 1
v v
1 1
circular queue of pages circular queue of pages
(a) (b)

by

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8t" Edition 8.33

- Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

m LFU Algorithm: replaces page with smallest count

m MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

LFU : Least Frequently Used (amuilumsgnl¥ioaiign)
MFU: Most Frequently Used @walumsgalfanniga)

e —

N
ny AN
3 2 e\
P SR
;ﬁ%\\\\‘
"
\
WS
el P

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 8.34

¥
1,

‘ww-f Allocation of Frames

B Each process needs minimum number of pages
m Example: IBM 370 — 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to
®m Two major allocation schemes
e fixed allocation
e priority allocation

e —

A
AN\
> 2 |
L «:s\ o\
7 'w\\l\‘
) 5
“ P

Operating System Concepts — 8t Edition 8.35 Silberschatz, Galvin and Gagne ©2009

=

- ﬁm.‘\

& Fixed Allocation

m Equal allocation — For example, if there are 100 frames and 5 processes,
give each process 20 frames. (1éan (frame / process) = (100 /5)

m Proportional allocation — Allocate according to the size of process

— S; =size of process p,
- S=2X5
— m =totalnumber of frames

. Si
— a; =allocation for p, = §X m

P.
m = 64 !
s, =10 / P
s, =127 < 2
P, 4 5 pages frame a, = 10 6a~5
137
P 14 59 pages frame a, = 2! . 64 ~ 59
2 PeS 2137 P 5

Operating System Concepts — 8t Edition 8.36 Silberschatz, Galvin and Gagne ©2009

o Priority Allocation

m Use a proportional allocation scheme using priorities rather than
size

m If process P; generates a page fault,
e select for replacement one of its frames

e select for replacement a frame from a process with lower
priority number

Operating System Concepts — 8t Edition 8.37 Silberschatz, Galvin and Gagne ©2009

“$77 Global vs. Local Allocation

B Global replacement — process selects a replacement frame
from the set of all frames; one process can take a frame from
another

m [ocal replacement — each process selects from only its own
set of allocated frames

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 8.38

Page-Fault Frequency Scheme

m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame

e If actual rate too high, process gains frame

page-fault rate

number of frames

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8t" Edition 8.39

2 Other Issues -- Prepaging
® Prepaging
e To reduce the large number of page faults that occurs at process
startup

e Prepage all or some of the pages a process will need, before
they are referenced

e But if prepaged pages are unused, I/O and memory was wasted
e Assume s pages are prepaged and a of the pages is used

» Is cost of s * a save pages faults > or < than the cost of

prepaging
s * (1- a) unnecessary pages?

» @ near zero = prepaging loses

S
y o

4 <

7 2%

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 8.40

> & Other Issues — Page Size

m Page size selection must take into consideration:

(definsanvinaves page size dudsadundn)

e fragmentation
e table size -> winwnapage idn fizdosdsi page table filugj

e |/O overhead -> siivsaniision page fault
e |ocality

Operating System Concepts — 8t Edition 8.41 Silberschatz, Galvin and Gagne ©2009

=
,_ﬁﬂ’?»"“‘-’-l

r &l Other Issues — TLB Reach

® TLB Reach - The amount of memory accessible from the TLB
TLB Reach = (TLB Size) X (Page Size)
|deally, the working set of each process is stored in the TLB
e Otherwise there is a high degree of page faults
® Increase the Page Size

e This may lead to an increase in fragmentation as not all
applications require a large page size

® Provide Multiple Page Sizes

e This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

TLB : Translation Look-aside Buffer

«.‘..’ '-h‘ ‘l
y W
U 29X

Operating System Concepts — 8t Edition 8.42 Silberschatz, Galvin and Gagne ©2009

=

N“e
Other Issues — Program Structure

| $198a row, j $1eds column

B Program structure
e ITnt[128,128] data;

e Eachrow is stored in one page
e Program 1

for (j = 0; j <128; j++)
for (1 = 0; 1 < 128; i++)
data[i,j] = O;

128 x 128 = 16,384 page faults
e Program 2
for (i = 0; 1 < 128; i++)
for (J = 0; j < 128; j++)
data[i,j] = O;

128 page faults

Operating System Concepts — 8t Edition 8.43 Silberschatz, Galvin and Gagne ©2009

“%7/ Other Issues — I/0 interlock

m |/O Interlock — Pages must sometimes be locked into memory

m Consider I/O - Pages that are used for copying a file from a
device must be locked from being selected for eviction by a

page replacement algorithm

AN
- v,\“'“\
B
Saf S = ‘u«\\"\
WS
“ A%

Operating System Concepts — 8t Edition 8.44 Silberschatz, Galvin and Gagne ©2009

g"/G?*)"f{e<'alson Why Frames Used For I/O Must Be In Memory

buffer i

Operating System Concepts — 8t" Edition

8.45

disk drive

SO
‘ (S
A ﬁ;:*

Silberschatz, Galvin and Gagne ©2009

“»77 Operating System Examples

L\

® Windows XP

m Solaris

S

- g

L2 7:\‘§
¥

A

Operating System Concepts — 8t Edition 8.46 Silberschatz, Galvin and Gagne ©2009

Windows XP

Operating System Concepts — 8" Edition 8.47

Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

Processes are assigned working set minimum and working set
maximum

Working set minimum is the minimum number of pages the process is
guaranteed to have in memory

A process may be assigned as many pages up to its working set maximum

When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount of

free memory

Working set trimming removes pages from processes that have pages in
excess of their working set minimum

S
y o

4 <

7 2%

Silberschatz, Galvin and Gagne ©2009

> Solaris

Maintains a list of free pages to assign faulting processes

Lotsfree — threshold parameter (amount of free memory) to begin paging
Desfree — threshold parameter to increasing paging

Minfree — threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

m Pageout is called more frequently depending upon the amount of free
memory available

N\
194 y "‘v\;

A

Operating System Concepts — 8t Edition 8.48 Silberschatz, Galvin and Gagne ©2009

r & Solaris 2 Page Scanner

8192 |
fastscan

scan rate

100
slowscan

minfree desfree lotsfree
amount of free memory

L 4

Operating System Concepts — 8t Edition 8.49 Silberschatz, Galvin and Gagne ©2009

End of Chapter 8

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2009

