11 204341 wad 1 1n1sAnE" 2563

9.03.937

Operating System Concepts — 10t Edition,

Chapter 6: Deadlocks

R ¥ 7 "*d&?‘)
@

J\N

Silberschatz, Galvin and Gagne ©2018

Chapter Objectives

Operating System Concepts — 10t Edition 6.3

To develop a description of deadlocks, which prevent sets of
concurrent processes from completing their tasks

To present a number of different methods for preventing or
avoiding deadlocks in a computer system

Silberschatz, Galvin and Gagne ©2018

w

a

g
k‘.u'/

N

Bridge Crossing Example

Operating System Concepts — 10t Edition 6.5

A

AT

m Traffic only in one direction
m Each section of a bridge can be viewed as a resource

m [f a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

m Several cars may have to be backed up if a deadlock
occurs

m Starvation is possible
= Note — Most OSes do not prevent or deal with deadlocks

Silberschatz, Galvin and Gagne ©2018

o a a a [
AT NINIF1INYINITADUNAUNDT UY.

Chapter 6: Deadlocks

The Deadlock Problem

System Model

Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

AR

~ %

Operating System Concepts — 10 Edition 62 Silberschatz, Galvin and Gagne ©2018

The Deadlock Problem

m A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

m Example

o System has 2 disk drives

e P, and P, each hold one disk drive and each needs another one
m Example

e semaphores A and B, initialized to 1

Py P,

wait (A); wait(B)

wait (B); wait(A)
) /“‘“ i
acquire: snnasounisd SASN
allp - |
)8
Operating System Concepts — 10" Edition 6.4 Silberschatz, Galvin and Gagne ©2018

System Model

m Resourcetypes Ry, R,, ..., R,
CPU cycles, memory space, I/O devices
m Each resource type R; has W, instances.
m Each process utilizes a resource as follows:
e request
® use

o release

Operating System Concepts — 10% Edition 6.6

Silberschatz, Galvin and Gagne ©2018

11/09/63

11 204341 wad 1 1n1sAnE" 2563

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

® Mutual exclusion: only one process at a time can use a
resource

® Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

m No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task

m Circular wait: there exists a set {P,, P;, ..., Py} of waiting
processes such that P is waiting for a resource that is held
by P;, P, is waiting for a resource that is held by
P,, ..., P,_; is waiting for a resource that is held by
P,, and P, is waiting for a resource that is held by P,.

simultaneously : iiatulunarderi
voluntarily : nsziiuaiauds 'S
Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 6.7

»

~%”’ Resource-Allocation Graph (Cont.)

® Process

@

® Resource Type with 4 instances

oo
® P, requests instance of R;

oo
oo

= Pis holding an instance of R; R

Y
Ry

Operating System Concepts — 10t Edition 6.9

Silberschatz, Galvin and Gagne ©2018

—=
‘"‘_/"Resource Allocation Graph With A Deadlock

Jans E fe 2

/ nswliiimsiAndiu Cycle (asow 2 29 I
X R it 1
. P1->R1->P2->R3->P3->R2->P1
R, .
R, wita =7

£

n
Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 6.11

A

9.03.2379 A3 UM MATFIINGINTADUNAADS WY,

=
)

r a Resource-Allocation Graph

A set of vertices V and a set of edges E.

m Vs partitioned into two types:

o P={P,, P, ..., P}, the set consisting of all the processes in the
system

o R={R;, R,, ..., R}, the set consisting of all resource types in
the system

m request edge —directed edge P, > R;
m assignment edge — directed edge R; — P;

Operating System Concepts — 10 Edition 6.8 Silberschatz, Galvin and Gagne ©2018

BN

’f.,'E)~(ampIe of a Resource Allocation Graph

lénswl E = {P1->R1,
P2->R3,
R1->P2,
R2->P1,
R2-> P2,
R3->P3}

Operating System Concepts — 10% Edition 6.10 Silberschatz, Galvin and Gagne ©2018

“$%/Graph With A Cycle But No Deadlock

) A Cycle
R
=
°o— vilude'hiia Deadlock ??7?
Ps
win P4 1aes R2 Mriuszuy
e P3 s2'1dnseunsemsnens
uag'hifia Cycle
Ry
N
(]
=
P
P
Operating System Concepts — 10* Edition 6.12 Silberschatz, Galvin and Gagne ©2018

11 204341 wad 1 1n1sAnE" 2563

Basic Facts

m [f graph contains no cycles = no deadlock

m [f graph contains a cycle =
e if only one instance per resource type, then deadlock

e if several instances per resource type, possibility of
deadlock

Operating System Concepts — 10t Edition 6.13 Silberschatz, Galvin and Gagne ©2018

("
“%7/ Methods for Handling Deadlocks

m Ensure that the system will never enter a deadlock state
muaisealunsli Resource)

m Allow the system to enter a deadlock state and then recover
(ioRadym auudlviindy

® [gnore the problem and pretend that deadlocks never occur in the
system; used by most operating systems, including UNIX

@eaduilym vivailewhifinsin Deadlockluszuy
werx 50T 1 F5msiu OS donlngjess=<)

W

Operating System Concepts — 10 Edition 6.14 Silberschatz, Galvin and Gagne ©2018

Deadlock Prevention (ieafiuy)

- N Py y . _ 2 -
finsanda maina Deadlock deaiidenly wa 4 nsaifatumiouiu
Restrain the ways request can be made

® Mutual Exclusion — not required for sharable resources; must hold
for nonsharable resources

® Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

e Require process to request and be allocated all its resources
before it begins execution, or allow process to request
resources only when the process has none

e Low resource utilization; starvation possible
(¥10 Resource 31auA hig 1115914 Process Bonsadldnanug annse
11 Resource il¥1szTomhilo iasado st umu iiooz1¥lmidos Request
Tl
Winil Process #oamsl¥ Resource HldFunmsiiaanng oziiia £
b

Starvation)

Operating System Concepts — 10t Edition 6.15 Silberschatz, Galvin and Gagne ©2018

=

)
“%7/ Deadlock Prevention (Cont.)

= No Preemption —

o If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released

e Preempted resources are added to the list of resources for which
the process is waiting

e Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting

m Circular Wait — impose a total ordering of all resource types, and
require that each process requests resources in an increasing order of
enumeration

Impose : fmua A

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10% Edition 6.16

N

(g -

] Deadlock Avoidance

Requires that the system has some additional a priori information
available.

= Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need.

® The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

® Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

priori : ydmnoumi

Operating System Concepts — 10™ Edition 6.17 Silberschatz, Galvin and Gagne ©2018

a A °

9.05.2570 A3 gUA MAININeINTADNIIADT NY.

a

Safe State

® When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state.

m System is in safe state if there exists a safe sequence of all processes.

m Sequence <Py, P,, ..., P,> is safe if for each P, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the P, withj <i.

e [f P, resource needs are not immediately available, then P; can wait
until all P; have finished.

* When P is finished, P, can obtain needed resources, execute,
return allocated resources, and terminate.

e When P, terminates, P, can obtain its needed resources, and so

on.
@
Operating System Concepts — 10" Edition 6.18 Silberschatz, Galvin and Gagne ©2018

11 204341 wad 1 1n1sAnE" 2563

Basic Facts

m [f a system is in safe state = no deadlocks.
m [f a system is in unsafe state = possibility of deadlock.

® Avoidance = ensure that a system will never enter an unsafe state.

Operating System Concepts — 10t Edition 6.19 Silberschatz, Galvin and Gagne ©2018

)
r.di Avoidance algorithms

m Single instance of a resource type
e Use a resource-allocation graph

m Multiple instances of a resource type
o Use the banker’s algorithm

Operating System Concepts — 10t Edition 6.21 Silberschatz, Galvin and Gagne ©2018

».‘;.;‘ﬁ Resource-Allocation Graph For Deadlock Avoidance

. R1 Request
Assignment “« edge
edge N /

Claim edge H

B SR SRR S pts — 10 Edition 623 Silberschatz, Galvin and Gagne ©2018

A

9.03.2379 A3 UM MATFIINGINTADUNAADS WY,

gy
"f*;" Safe, Unsafe , Deadlock State

unsafe
agluaez unsafe ewezliiifa deadlock
Deadlock &
> safe
egluaanz safe hifa
Deadlock miveu
- f}k"_;]
L8
Operating System Concepts — 10 Edition 6.20 Silberschatz, Galvin and Gagne ©2018

=

)

“%7/ Resource-Allocation Graph Scheme

m Claim edge P;— R;indicated that process P; may request
resource R;; represented by a dashed line

m Claim edge converts to request edge when a process
requests a resource

m Request edge converted to an assignment edge when the
resource is allocated to the process

® When a resource is released by a process, assignment
edge reconverts to a claim edge

m Resources must be claimed a priori in the system

A f}k"_\ Sl
Silberschatz, Galvin and Gagne 62018

Claim edge : dunnudoans uiaaslaaldhdmlsy)

Operating System Concepts — 10% Edition 6.22

\-';;‘3 ‘Unsafe State In Resource-Allocation Graph

R,

winiianudeanisves P1 19 R2
szuues lieyga mszemiiine R2
Deadlock @nndnuuzeniia

E SN
23500 Yu'ld) fﬁ)

Operating System Concepts — 10% Edition 6.24

11 204341 wad 1 1n1sAnE" 2563

»

ol
“#”/ Resource-Allocation Graph Algorithm

® Suppose that process P, requests a resource R;

® The request can be granted only if converting the request
edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

Operating System Concepts — 10t Edition 6.25

Silberschatz, Galvin and Gagne ©2018

M./‘—;{’Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.
m Available: Vector of length m. If available []] = k, there are k instances
of resource type R;available. afiu Resourceiii

B Max: nx mmatrix. If Max [ij] = k, then process P; may request at most
k instances of resource type R;. s, gugaves Resource finssuoumsudazin
doamsld)

® Allocation: nx m matrix. If Allocation[ij] = k then P; is currently
allocated k instances of R; afiuw. Resource fudaznszimmsnsounsesog)

m Need: nxm matrix. If Need[ij] = k, then P; may need k more instances
of R;to complete its task. afuan. Resourceiimaoeg ndaznszuiunsdinidoms1f ite
amliadomnysal)

Need [i,j] = Max{i,j] — Allocation [ij].

(o4 Resource quga — 114 Resource asounsoud) /x\
S

Operating System Concepts — 10t Edition 6.27

Silberschatz, Galvin and Gagne ©2018

*-"».;J' Resource-Request Algorithm for Process P;

Request = request vector for process P;. If Request;[j] = k then
process P; wants k instances of resource type R;

1. If Request; < Need; go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Request; < Available, go to step 3. Otherwise P, must
wait, since resources are not available.

3. Pretend to allocate requested resources to P; by modifying
the state as follows:

Available = Available - Request; ;
Allocation;= Allocation; + Request;;
Need; = Need; — Request; .

* If safe = the resources are allocated to P;.

* If unsafe = P, must wait, and the old resource-allocation
state is restored

exceed: iy /{"\\\
pretend: msda .

Operating System Concepts — 10t Edition 6.29

Silberschatz, Galvin and Gagne ©2018

A

9.03.2379 A3 UM MATFIINGINTADUNAADS WY,

Banker’s Algorithm

m Multiple instances.
B Each process must a priori claim maximum use.

® When a process requests a resource it may have to wait.

® When a process gets all its resources it must return them in a finite amount
of time.

Operating System Concepts — 10 Edition 6.26 Silberschatz, Galvin and Gagne ©2018

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish []] = false fori=1,2, ..., n.
2. Find and i such that both: i
(a) Finish [1] = false L o asnaeuionly
(b) Need, < Work j If (Finish[i]==false AND Need; <= work)
If no such i exists, go to step 4.

3. Work = Work + Allocation;
Finish[] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

Resource fianuzit avilable iifosolumsianiiolil ([‘;:,““
-

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10% Edition 6.28

EN
.y

“#7/ Example of Banker’s Algorithm

m 5 processes P,through P,; 3 resource types
A (10 instances), B (5 instances), and C (7 instances).
m Snapshot at time T;:

Allocation Max Available
ABC ABC ABC

Py 010 753 332
P, 200 322
P, 302 902
Py 211 222
Py, 002 433
Operating System Concepts — 10" Edition 6.30

11 204341 wad 1 1n1sAnE" 2563

Example (Cont.)

= The content of the matrix. Need is defined to be Max — Allocation.

Need

ABC ~1753-010
P, 743
P, 122
P, 600

P, 011
P, 431«—1433-002

m The system is in a safe state since the sequence < Py, P, P,, P,, Py>
satisfies safety criteria.

s
Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 6.31

(&) H
2 Deadlock Detection

win'lifims Protection uaz Avoidance

m Allow system to enter deadlock state
m Detection algorithm

® Recovery scheme

W
Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 6.33

N

®

G‘:'Q

(b)

Resource-Allocation Graph Corresponding wait-for graph

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 6.35

a A

9.03.2379 A3 UM MATFIINGINTADUNAADS WY,

11/09/63

Example P, Request (1,0,2)

m Check that Request < Available (that is (1,0,2) < (3,3,2) = true.

Allocation Need Available
ABC ABC ABC

200+102 010 743 230<\{
332-102]
\S’:K‘aoz 020
P, 302 eoo_
P, 211 011

P, 002 431

m Executing safety algorithm shows that sequence <P;, Ps, P,, Py, P,>
satisfies safety requirement.

m Can request for (3,3,0) by P, be granted?
m Can request for (0,2,0) by Pybe granted?

7R

6.32 Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10 Edition

";‘%ingle Instance of Each Resource Type

h‘/‘ wlasihu nsnimssenssminenns (wait-for graph)
m Maintain wait-for grap

o Nodes are processes.

/l + i Tuaves Resource uéd
e P;— Pjif P;is waiting for P;.

m Periodically invoke an algorithm that searches for a cycle in the graph.

® An algorithm to detect a cycle in a graph requires an order of n? operations,
where n is the number of vertices in the graph.

7R

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10% Edition 6.34

ol
4%’ Several Instances of a Resource Type

m Available: A vector of length m indicates the number of available
resources of each type.

®m Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process.

m Request: An nx m matrix indicates the current request of each
process. If Request [i1 = k, then process P; is requesting k more
instances of resource type. R;.

Operating System Concepts — 10" Edition 6.36 Silberschatz, Galvin and Gagne ©2018

11 204341 wad 1 1n1sAnE" 2563

o)
2 Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:
(a) Work = Available
(b) Fori=1,2, ..., n, if Allocation; = 0, then
Finish[i] = false;otherwise, Finish[i] = true.
2. Find an index i such that both:

ve1 Banker’s Algo
Fori=1,2 .n then
Finish[i]=false;

(a) Finishli] == false asdouidouly
(b) Request; < Work If (Finish[i]==false AND Need, <= work)

If no such i exists, go to step 4.

Operating System Concepts — 10t Edition 6.37 Silberschatz, Galvin and Gagne ©2018

N

o)
~#7/ Example of Detection Algorithm

®m Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

® Snapshot at time T:

Allocation Request Available
ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 000
Py, 211 100
P, 002 002

m Sequence <P, P,, Ps, P;, P,> will result in Finish[i] = true for all i

Operating System Concepts — 10" Edition 6.39 Silberschatz, Galvin and Gagne ©2018

N

|
&t Detection-Algorithm Usage

® When, and how often, to invoke depends on:
e How often a deadlock is likely to occur?
o How many processes will need to be rolled back?
» one for each disjoint cycle

m [f detection algorithm is invoked arbitrarily, there may be many cycles in the
resource graph and so we would not be able to tell which of the many
deadlocked processes “caused” the deadlock

arbitrarily : hifingnusi

Operating System Concepts — 10™ Edition 6.41 Silberschatz, Galvin and Gagne ©2018

A

9.03.2379 A3 UM MATFIINGINTADUNAADS WY,

Detection Algorithm (Cont.)

3. Work = Work + Allocation;
Finish[]] = true
go to step 2

4. If Finish[i] == false, for some i, 1 <i< n, then the system is in deadlock
state. Moreover, if Finish[i] == false, then P; is deadlocked

Algorithm requires an order of O(m x n? operations to detect
whether the system is in deadlocked state

7R

Operating System Concepts — 10 Edition 6.38 Silberschatz, Galvin and Gagne ©2018

7 Example (Cont.)

®m P, requests an additional instance of type C

Request

ABC
P, 000
P, 201
P, 001
P; 100
P, 002

m State of system?

e Can reclaim resources held by process P, but insufficient resources to
fulfill other processes; requests

o Deadlock exists, consisting of processes P;, P,, P3;, and P,

<y
insufficient : hifiuano) /:::]
e

Operating System Concepts — 10% Edition 6.40 Silberschatz, Galvin and Gagne ©2018

EN

!
7 Recovery from Deadlock: Process Termination

(umﬁnniwwmﬁ;lﬁn deadlock)
m Abort all deadlocked processes

m Abort one process at a time until the deadlock cycle is eliminated

® In which order should we choose to abort?

Priority of the process

e How long process has computed, and how much longer to completion
e Resources the process has used

e Resources process needs to complete

o How many processes will need to be terminated

e Is process interactive or batch?

Operating System Concepts — 10" Edition 6.42 Silberschatz, Galvin and Gagne ©2018

11 204341 wad 1 1n1sAnE" 2563 11/09/63

|
%/ Recovery from Deadlock: Resource Preemption

A 9y v o S o & P
msidenl¥ azfosiiorsanwafiazinatu 3 do dail

m Selecting a victim — minimize cost

m Rollback — return to some safe state, restart process for that state E
nd of Chapter 7
m Starvation — same process may always be picked as victim, I T

include number of rollback in cost factor

s
-wgw
J\N
Victim : fuanei (process /f'(\\
i (p) P
) =
Operating System Concepts — 10t Edition 6.43 Silberschatz, Galvin and Gagne ©2018 Operating System Concepts — 10 Edition, Silberschatz, Galvin and Gagne ©2018

a A °

a a a L4
9.A7.333A ATFUA NIAIFIINYINITADNNIUADT Y. 8

a

