204320 - Database Management

Chapter 5

More SQL: Complex Queries,
Triggers, Views, and Schema
Modification

Adapted for 204320

by Areerat Trongratsameethong

Addison-Wesley
is an imprint of

PEARSON Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 5 Outline

More Complex SQL Retrieval Queries
More Complex SQL Insert, Update, and Delete

Specifying Constraints as Assertions and
Actions as Triggers

Views (Virtual Tables) in SQL
Schema Change Statements in SQL

More Complex SQL Retrieval Queries

e Additional features allow users to specify
more complex retrievals from database:

— Nested queries

— Joined tables

— Quter joins

— Aggregate functions and grouping

Comparisons Involving NULL
and Three-Valued Logic

e Meanings of NULL

— Unknown value: 1356
— Unavailable or withheld value: laladunnan

— Not applicable attribute: 1sinsdasaslsizia

e Each individual NULL value considered to be
different from every other NULL value

e SQL uses a three-valued logic:
— TRUE, FALSE, and UNKNOWN

Comparisons Involving NULL
and Three-Valued Logic (cont’d.)

Table 5.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
(c) NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

Comparisons Involving NULL
and Three-Valued Logic (cont’d.)

e SQL allows queries that check vlvhether an attribute
value is NULL: @ u1saldAnde SQL msradaw
pmAuasly attribute duflu NULL vsalsl
TaelE A AIAIL A AP LA

— 1S or IS NOT NULL

Query 18. Retrieve the names of all employees who do not have supervisors.

Qi18: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn 1S NULL;

Nested Queries, Tuples,
and Set/Multiset Comparisons

* Nested queries: Usznausas 2 42u Aa query druiias
swlu uaz query dauilassuuan

— Complete select-from-where blocks within WHERE
clause of another query: daunatifiulu Aa select-from-

where fiatuss keyword WHERE
— Outer query: query gufiagauuan
e Comparison operator IN: operator ‘17{61,%3
WFeiegusening outer waz inner

— Compares value v with a set (or multiset) of values V
— Evaluates to TRUE if v is one of the elements in V

Q4A: SELECT
FROM
WHERE
A2DEINILTU

Naang (Outer)

| Pnumber |
@
Q
3
4
©)

Nested Queries (cont’d.)

DISTINCT Pnumber

PROJECT

Pnumbe

(SELECT
FROM
WHERE

OR

Pnumbe

(SELECT
FROM
WHERE

NRANS (nested/inner)
dA7uUN 1

1
2

NRANS (nested/inner)
AUN 2

} @M Pnumber dafiAlaid iy

1 vFauLnay Pnumber nu

Poumber

PROJECT, DEPARTMENT, EMPLOYEE
Dnum=Dnumber AND

Mgr_ssn=Ssn AND Lname="Smith’)

Pno
WORKS_ON, EMPLOYEE
Essn=Ssn AND Lname="Smith’);

HARNWEFAVINE
1
2
5

—_

HAANSTLAANN
nestgd SELECT
qUN 1

OR

NAANETLAANN
nestgd SELECT
AUN 2

Nested Queries (cont’d.)

e Use tuples of values in comparisons

— Place them within parentheses: sinfiasnisiFauiay
wnndn 1 attribute 1iilanaiau

uuneue): nau Select 1vn field (59897 Pno waz Hours)

SELECT DISTINCT Essn uinagnsaadinelfuansanz field fiszyuds keyword
FROM WORKS_ON SELECT
WHERE (Pno, Hours) IN (SELECT Pno, Hours

FROM WORKS_ON

WHERE Essn="123456789");

The following SQL statement selects all customers with a City of "Paris" or "London ".

SELECT *

FROM Customers
WHERE City IN ('Paris’,'London’);

/] wa@mann fields 423 Customers

// w3aniiay field City ANy Paris WAz London

Nested Queries (cont’d.)

 Use other comparison operators to compare a
single value v
— = ANY (or = SOME) operator

e Returns TRUE if the value v is equal to some value in
the set V and is hence equivalent to IN

— Other operators that can be combined with ANY
(or SOME): >, >=, <, <=, and <>

SELECT Lname, Fname NAANEAD WINNUATRuLIAau
FROM EMPLOYEE mnn’imnﬁuﬁﬂgiuu,wun
WHERE Salary > (SELECT Salary UNELAY 5

FROM EMPLOYEE

WHERE Dno=5); o -
ol Salary > SOME %54

Salary > ANY
WHERE Salary = ANY (SELECT ...) is the same as NAAWEAD WUNUNTRULAa
WHERE Salary = SOME (SELECT ...) is the same as annduneaudiagluLaun
WHERE Salary IN (SELECT ...) ——

Nested Queries (cont’d.)

e Avoid potential errors and ambiguities

— Create tuple variables (aliases) for all tables referenced in
SQL query

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname]_ .
& records 129 EMPLOYEE

FROM EMPLOYEE AS E
WHERE ESsnIN (SELECT Essn & records U84
FROM DEPENDENT AS D| DEPENDENT
WHERE E.Fname=D.Dependent name
11% join umils AND E.Sex=D.Sex };\
E.Fname
D.Dependent_name
91N outer

Q1N inner

Q16A: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.Sen=D.Essn AND E.Sex=D.Sex

AND E.Fname=D.Dependent_name; H

Correlated Nested Queries

e Correlated nested query

— Evaluated once for each tuple in the outer query
o EXISTS function

— Check whether the result of a correlated nested query is
empty or not

o 1Y . 1 [1 Y < YR
— ®32980U outer N1 inner 81t28 14 inner W@ 1 1 return True LHADILT AR

record §ANIYVI inner . :
q http://www.dba-oracle.com/t_in_vs_exists_sqgl.htm

The Oracle documentation notes that:

SELECT * “If the selective predicate is in the subquery, then use
IN. If the selective predicate is in the parent query, then
FROM customers use EXISTS.”

WHERE EXISTS (SELECT *
FROM order_details
WHERE customers.customer_id = order_details.customer_id);

> anA19H order 11 order_details azlsnla (aalidatneias 1 order)

The EXISTS and UNIQUE Functions in SQL
e EXISTS and NOT EXISTS

— Typically used in conjunction with a correlated nested query

SELECT *
FROM Customers
WHERE NOT EXISTS (SELECT *
FROM order_details
WHERE customers.customer_id = order_details.customer _id);

> anAlddl order lu order_details

e SQL function UNIQUE(Q)

— Returns TRUE if there are no duplicate tuples in the result of
query Q

SELECT *
FROM Studentas S
WHERE Unique (SELECT CourselD
FROM Enroll as E
WHERE S.StudentlD = E.StudentID);

> UNANHINAINSLULULARETIEITIASILALD 13

Explicit Sets and Renaming of
Attributes in SQL

e Can use explicit set of values in WHERE clause

e Use qualifier AS followed by desired new
name

— Rename any attribute that appears in the result of
a query

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

Joined Tables in SQL and Outer Joins

e Joined table

— Permits users to specify a table resulting from a
join operation in the FROM clause of a query

e The FROM clause in Q1A

— Contains a single joined table

Q1A: SELECT Fname, Lhame, Address
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="Research’;

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers INNER JOIN Orders ON Customers.CustomerID=0Orders.CustomerID
ORDER BY Customers.CustomerName;

Joined Tables in SQL and Outer
Joins (cont’d.)

e Specify different types of join
— NATURAL JOIN
— Various types of OUTER JOIN

e NATURAL JOIN on two relations R and S

— No join condition specified

— Implicit EQUIJOIN condition for each pair of
attributes with same name from R and S

Joined Tables in SQL and Outer Joins (cont’d.)

* Inner join
— Default type of join in a joined table

— Tuple is included in the result only if a matching tuple exists in
the other relation

e LEFT OUTER JOIN
— Every tuple in left table must appear in result
— If no matching tuple
e Padded with NULL values for attributes of right table
e RIGHT OUTER JOIN
— Every tuple in right table must appear in result
— If no matching tuple
e Padded with NULL values for the attributes of left table
e FULL OUTERJOIN
e Can nest join specifications

Joined Tables in SQL and Outer Joins (cont’d.)

Reference http://en.wikipedia.org/wiki/Join_(SQL)

SELECT
FROM employee LEFT OUTER JOIN department
ON employee.DepartmentID = department.DepartmentID;

Employee.LastName Employee.DepartmentiD Department.DepartmentName Department.DepartmentiD

Employee table Department table Jones 33 Engineering 33
Rafferty 31 Sales 31
LastName DepartmentiD DepartmentiD | DepartmentName : :
Robinson 34 Clerical 34
Rafferty 31 31 sales Smith 34 Clerical 34
Wiliams [
Jones 33 33 Engineering Heisenberg 33 Engineering 33
Heisenberg 33 34 Clerical SELECT
FROM employee RIGHT OUTER JOIN department
Robinson 34 35 Marketing ON employes.DepartmentID = department.DepartmentID;
Smlth 34 Employee.LastName Employee.DepartmentiD Department.DepartmentName Department.DepartmentiD
. Smith 34 Clerical 34
Williams NULL Jones 33 Engineering 33
Robinson 34 Clerical 34
Heisenberg 33 Engineering 33
Rafferty 3 Sales 31
SELECT NULL Marketing 35
FROM employee FULL OUTER JOIN department
ON employee.DepartmentID department .DepartmentID;
Employee.LastName| Employee.Department|D Department.DepartmentMName Department.DepartmentiD
Smith 34 Clerical 34
Jones 33 Engineering 33
Robinson 34 Clerical 34
Wiliams [[y
Heisenberg 33 Engineering 33
Rafferty 31 Sales 31 18
NULL [Marketing 35

More Complex SQL
Insert, Update, Delete

e More complex of insert command:

INSERT INTO first_table_name [(columnl, column2, ..., columnN)]

SELECT columnl, columnz2, ..., columnN
FROM second _table_name
[WHERE condition];

[]: optional

INSERT INTO Customers (CustomerName, Country)
SELECT SupplierName, Country
FROM Suppliers;

INSERT INTO Customers (CustomerName, Country)
SELECT SupplierName, Country
FROM Suppliers
WHERE Country='Germany';

Reference: http://www.w3schools.com/sql/

More Complex SQL
Insert, Update, Delete

e More complex of update command:

UPDATE ips
SET countryid = (select countryid from country where ips.iso=country.iso);

UPDATE country p, ips pp
SET pp.countryid = p.countryid
WHERE pp.iso = p.iso;

UPDATE [tablel _name] AS t1 INNER JOIN [table2_name] AS t2 ON tl.[columnl_name] = t2.[columnl_name]
SET tl.[column2_name] =t2.[column2_name];

UPDATE business AS b INNER JOIN business_geocode AS g ON b.business_id = g.business_id
SET b.mapx = g.latitude, b.mapy = g.longitude
WHERE (b.mapx =" or b.mapx = 0) and g.latitude > 0;

Reference: http://dba.stackexchange.com/questions/21152/how-to-update-one-table-based-on-another-tables-values-on-the-fly

More Complex SQL
Insert, Update, Delete

* Additional features allow users to specify more
complex of delete command:

DELETE t1,t2

FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE tl.id=t2.id AND t2.id=t3.id,

DELETE al, a2
FROM db1l.t1 AS al INNER JOIN db2.t2 AS a2
WHERE al.id=a2.id;

DELETE w

FROM WorkRecord2 w INNER JOIN Employee e ON EmployeeRun = EmployeeNo
WHERE Company ='1" AND Date ='2013-05-06'

DELETE WorkRecord2, Employee
FROM WorkRecord2 INNER JOIN Employee ON (EmployeeRun = EmployeeNo)
WHERE Company ='1" AND Date ='2013-05-06";

Reference: https://dev.mysqgl.com/doc/refman/5.0/en/delete.htmls-on-the-fly
http://stackoverflow.com/questions/16481379/how-to-delete-using-inner-join-with-sql-server

Aggregate Functions in SQL

Used to summarize information from multiple
tuples into a single-tuple summary

Grouping: 1ayaasluanmungu
— Create subgroups of tuples before summarizing

Built-in aggregate functions
— COUNT, SUM, MAX, MIN, and AVG

Functions can be used in the SELECT clause
or in a HAVING clause

Aggregate Functions in SQL (cont’d.)

e NULL values discarded when aggregate functions are applied
to a particular column: a1 NULL azlasinnsquiila aggregation
function 14nu column g 41 Salary (flu NULL uagld Weddu
Average a1 NULL azlsignsas

EMPLOYEE DEPARTMENT

Fname | Minit | Lname Ssn Bdate Address Sex |Salary | Super ssn | Dno Dname Dnumber Mar_ssn Maor_start date
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M |30000 (333445555 | 5 Rezoarch 3 333445555 1988-05-22
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |40000 (BBBEES555 | 5 Administration 4 0a7E54321 1965-01-04
Alicia] felaya | 9908B7TTT | 1968-01-19 | 3321 Castle, Spring. TX F 25000 (987654321 - Headquarters 1 888665355 1981-06-19
Jennifar S Wallace | 987654321 | 1944-08-20 | 201 Bamy, Bellaire, TX F |43000 (BB8EE5S55 | 4
Ramesh .4 Marayan | G6GEE4444 [1862-09-13 | 973 Are Oak, Humble, TX | 8 [38000 |333445535 | 5 .
loyce A English | 453453453 | 1972-07-31 | 5631 Rica, Houston, TX F 25000 (333445555 | 5 021 . S ELECT CDU NT { \JI
Ahmad | \ | Jabbar | 887087087 |1089-03-20 |(0BO Dallas, Houston, TX | M |25000 087654321 | 4 FROM EMPLOYEE;
Jamas E Barg BBBBEIDDS | 1937-11-10 | 430 Stone, Houston, TX M 55000 (MULL 1

Query 20. Find the sum of the salaries of all employees of the ‘Research’
department, as well as the maximum salary, the minimum salary, and the aver-
age salary in this department.

020: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHERE Dname="Research”;
Q22: SELECT COUNT (*)

FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME="Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22). 23

Grouping: The GROUP BY and HAVING Clauses

e Partition relation into subsets of tuples
— Based on grouping attribute(s)
— Apply function to each such group independently

e GROUP BY clause SELECT state, COUNT(state),
— Specifies grouping attributes EROM pfgig':;(;)

e |f NULLs exist in grouping attribute GROUP BY state:

— Separate group created for all tuples with a NULL tate COUNTCstate) CONTCS)
value in grouping attribute o e

NULL 0 1
Query 24. For each department, retrieve the department number, the number n:r i i
of employees in the department, and their average salary.
024: SELECT Dno, COUNT (*), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;
Fname |Minit | Lname Ssn *++|Salary | Super_ssn | Dno Dno |Count (*) | Avg (Salary)
John B | Smith | 123456789 30000 | 333445555 | 5 5 4 33250
Frankin | T | Wong | 333445555 40000 | 888665555 | 5 4 3 31000
Ramesh | K | Narayan | 666884444 38000 | 333445555 | 5 = 1 1 55000
Joyce A | English | 453453453 |---| 25000 | 33344856556 | 5 | | Result of Q24
Alicia) | Zelaya | 999887777 25000 | 987654321 | 4 | |
Jennifer | S | Wallace | 987654321 43000 | 888665555 | 4
Ahmad | V | Jabbar | 987987987 25000 | 987654321 | 4
James | E |Bong | 888665555 55000 | NULL 1 j— 24

Grouping EMPLOYEE tuples by the value of Dno

Grouping: The GROUP BY and HAVING Clauses (cont’d.)

e HAVING clause

— Provides a condition on the summary information

Query 26. For each project on which more than two employees work, retrieve
the project number, the project name, and the number of employees who work

on the project.

Q26: SELECT
FROM
WHERE

Pnumber, Pname, COUNT (*)

PROJECT, WORKS_ON

Prnumber=Pno
GROUP BY Pnumber, Pname

— These groups are not selected by
the HAVING condition of Q26.

Pname Pnumber Essn Pno | Hours Pname Count (%)
ProductY 2 123456789 | 2 75 ProductY 3
ProductY 2 453453453 2 20.0 Computerization 3
ProductY 2 3334455655 2 10.0 Reorganization 3
Computerization 10 333445555 (10 10.0 Newbenefits 3
Computerization 10 999887777 | 10 10.0 Result of 026
Computerization 10 987087087 | 10 | 35.0 (Prumber not shown)
Reorganization 20 333445555 20 10.0
Reorganization 20 987654321 | 20 15.0
Reorganization 20 888665555 | 20 NULL |_|
Newbenefits 30 987987987 | 30 5.0
Newbenefits 30 987654321 30 20.0
Newbenefits 30 299887777 | 30 30.0

HAVING COUNT (*) > 2;

Pname Pnumber Essn Pno | Hours
ProductX 1 123456789 | 1 325
ProductX 1 453453453 | 1 20.0
ProductY 2 123456789 | 2 75
Product 2 453453453 2 20.0
ProductY 2 333445555 2 10.0
ProductZ 3 666884444 3 40.0
ProductZ 3 333445555 | 3 10.0
Computerization 10 333445555 | 10 10.0
Computerization 10 999887777 | 10 10.0
Computerization 10 987987987 | 10 35.0
Reorganization 20 333445555 | 20 10.0
Reorganization 20 987654321 | 20 15.0
Reorganization 20 BBB665555 | 20 NULL
Newbenefits 30 987987987 | 30 5.0
Newbenefits 30 987654321 | 30 20.0
Newbenefits 30 999887777 | 30 30.0

After applying the WHERE clause but before applying HAVING

After applying the HAVING clause condition

25

Grouping: The GROUP BY and HAVING
Clauses (cont’d.)

Query 28. For each department that has more than five employees, retrieve
the department number and the number of its employees who are making
more than $40,000.

Q28: SELECT Dnumber, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno AND Salary>>40000 AND
(SELECT Dno
FROM EMPLOYEE Output = ?
GROUP BY Dno
HAVING COUNT (*) > 5)
EMPLOYEE DEPARTMENT
Fname | Minit | Lname S5sn Bdate Address Sox |Salary | Super_ssn | Dno Dname Dnumber Mar_ssn Mor_start date
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M |30000 (333445555 | 5 Rasearch 5 333445555 1088-05-22
Franklin T Wong 333445555 | 1955-12-08 (838 Voss, Houston, TX M 40000 |BBBEESS5S | 5 Administration 4 987654321 1995-01-01
Alicia] Felaya | DQO0BBYTTY (1968-01-19 |3321 Castle, Spring, TX F 25000 (9BTE54321 - Headquarters 1 808665555 1981-06-19
Jennifer =] Whallace | 987654321 | 1941-08-20 (291 Bemy, Bellaire, TX F 43000 |BBBEEDS555 | 4
Ramesh K Marayan | 66884444 | 1962-00-15 | 973 Fre Oak, Humble, TX | M (38000 (3334453535 | 5
Joyce A English | 453433453 | 1972-07-31 | 9631 Rice, Houston, TX F 25000 (333445555 | 5
Ahmad W Jabbar | 9873987587 | 1969-03-29 | 9B0 Dallas, Houston, TX | M |25000 [0B7654321 - 26
Jamas E Borg BBABESH55 | 1937-11-10 | 450 Stone, Houston, TX M 55000 |MWULL 1

Presenter
Presentation Notes
select dnumber,count(*)
from department,employee
where dnumber=dno and salary>40000 and dno in (select dno from employee group by dno having count(*)>5)
group by dnumber;

Discussion and Summary of SQL
Queries

SELECT <attribute and function list>
FROM <table list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]

[ORDER BY <attribute list>];

27

Specifying Constraints as
Assertions and Actions as Triggers

« CREATE ASSERTION

— Specify additional types of constraints outside
scope of built-in relational model constraints

« CREATE TRIGGER

— Specify automatic actions that database system
will perform when certain events and conditions
occur

.

Specifying General Constraints as
Assertions in SQL

« CREATE ASSERTION

— Specify a query that selects any tuples that violate
the desired condition

— Use only in cases where it is not possible to use

CHECK on attributes and domains

General Syntax: CREATE ASSERTION <name> CHECK(<condition>)

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS

(SELECT
FROM

WHERE

EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D
E.Salary>M.Salary

AND E.Dno=D.Dnumber

AND D.Mgr_ssn=M.Ssn));

Presenter
Presentation Notes
การตรวจสอบเพื่อให้มั่นใจ

Introduction to Triggers in SQL

e CREATE TRIGGER statement

— Used to monitor the database

e Typical trigger has three components:
— Event(s): e.g. insert, update
— Condition

— Action: a sequence of SQL statements

CREATE TRIGGER salary_trigger
BEFORE UPDATE ON employee_table REFERENCING NEW ROW AS n, OLD ROW AS o
FOR EACH ROW I[F n.salary <> o.salary THEN

END IF; ;

Reference: http://en.wikipedia.org/wiki/Database _trigger

Views (Virtual Tables) in SQL

e Concept of a view in SQL
— Single table derived from other tables
— Considered to be a virtual table

 CREATE VIEW command

— Give table name, list of attribute names, and a
qguery to specify the contents of the view

V1: CREATEVIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn AND Pno=Pnumber;

V2: CREATEVIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)
AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno
GROUP BY Dname;

Specification of Views in SQL
(cont’d.)

e Specify SQL queries on a view

e View always up-to-date
— Responsibility of the DBMS and not the user

e« DROP VIEW command

— Dispose of a view

View Implementation, View Update, and Inline Views

e Complex problem of efficiently implementing
a view for querying

 Query modificationapproach

— Modify view query into a query on underlying
base tables

— Disadvantage: inefficient for views defined via

complex queries that are time-consuming to
execute (nst join wana table azldnaiuu)

VA CREATEVIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber;

SELECT Fname, Lname
avi: SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON
FROM WORKS_ON{ ‘ WHERE e

WHERE Pname="ProductX’; Essn AND Pro=Pnumber
AND Pname="ProductX’;

View Implementation

* View materialization approach

— Physically create a temporary view table when the
view is first queried

— Keep that table on the assumption that other
qgueries on the view will follow

— Requires efficient strategy for automatically
updating the view table when the base tables are
updated

* Incremental update strategies

— DBMS determines what new tuples must be
inserted, deleted, or modified in a materialized
view table

View Update and Inline Views

 Update on a view defined on a single table without
any aggregate functions

— Can be mapped to an update on underlying base table

* View involving joins
— Often not possible for DBMS to determine which of the
updates is intended

(a):

(b):

UPDATEWORKS_ON
SET Pno (| SELECT
FROM
WHERE
WHERE Essn IN { SELECT
FROM
WHERE
AND
Pno (| SELECT
FROM
WHERE

Pnumber

PROJECT

Pname="Producty”)

Sen

EMPLOYEE

Lname="Smith’ AND Fname="John’)

Prnumber
PROJECT
Prame="ProductX’);

UPDATEPRCJECT SET Pname = "ProductY”

WHERE Prame = ‘Product}’;

n1s Update Base Table fisiigadasny UVL
UV1 azdiaegn Update fae Feanaiinainli
View auiidnedania UV uslddayasing
yunae anaagladayailignaadls

Uvie: UPDATEWORKS_ON1
SET Prame = ‘Producty”
WHERE Lname="5mith" AND Frame="John’
AND Prame="ProductX’;

View Update and Inline Views (cont’d.)

e Clause WITH CHECK OPTION

— Must be added at the end of the view definition if
a view is to be updated

CREATE VIEW VW_TechnicianEmployees
AS SELECT EmployeelD, Title, ManagerID
FROM HumanResources. Employee
WHERE Title LIKE '%technician%'

UPDATE VW_TechnicianEmployees
SET Title ='Chief’
WHERE EmployeelD=13

WITH CHECK OPTION;
* In-line view
— Defined in the FROM clause of an SQL query

— Jdanpinududanaas Query

Inline View Example http://www.orafaq.com/wiki/Inline_view

Schema Change Statements in SQL

Schema evolution commands
— Can be done while the database is operational
— Does not require recompilation of the database schema

DROP command

— Used to drop named schema elements, such as tables,
domains, or constraint

Drop behavior options:
— CASCADE and RESTRICT

Example:
— DROP SCHEMA COMPANY CASCADE;

e CASCADE Automatically drop objects (tables, functions,
etc.) that are contained in the schema.

e RESTRICT Refuse to drop the schema if it contains any
objects. This is the default.

The ALTER Command

e Alter table actions include:
— Adding or dropping a column (attribute)
— Changing a column definition
— Adding or dropping table constraints

e Example:

— ALTER TABLE COMPANY .EMPLOYEE ADD
COLUMN Job VARCHAR(12):

e To drop a column
— Choose either CASCADE or RESTRICT

The ALTER Command (cont’d.)

 Change constraints specified on a table

— Add or drop a named constraint

ALTER TABLE COMPANY EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Summary

e Complex SQL:

— Nested queries, joined tables, outer joins,
aggregate functions, grouping

« CREATE ASSERTION and CREATE
TRIGGER

e Views
— Virtual or derived tables

	 204320 - Database Management
	Chapter 5 Outline
	More Complex SQL Retrieval Queries
	Comparisons Involving NULL�and Three-Valued Logic
	Comparisons Involving NULL�and Three-Valued Logic (cont’d.)
	Comparisons Involving NULL�and Three-Valued Logic (cont’d.)
	Nested Queries, Tuples,�and Set/Multiset Comparisons
	Nested Queries (cont’d.)
	Nested Queries (cont’d.)
	Nested Queries (cont’d.)
	Nested Queries (cont’d.)
	Correlated Nested Queries
	The EXISTS and UNIQUE Functions in SQL
	Explicit Sets and Renaming of Attributes in SQL
	Joined Tables in SQL and Outer Joins
	Joined Tables in SQL and Outer Joins (cont’d.)
	Joined Tables in SQL and Outer Joins (cont’d.)
	Joined Tables in SQL and Outer Joins (cont’d.)
	More Complex SQL �Insert, Update, Delete
	More Complex SQL �Insert, Update, Delete
	More Complex SQL �Insert, Update, Delete
	Aggregate Functions in SQL
	Aggregate Functions in SQL (cont’d.)
	Grouping: The GROUP BY and HAVING Clauses
	Grouping: The GROUP BY and HAVING Clauses (cont’d.)
	Grouping: The GROUP BY and HAVING Clauses (cont’d.)
	Discussion and Summary of SQL Queries
	Specifying Constraints as Assertions and Actions as Triggers
	Specifying General Constraints as Assertions in SQL
	Introduction to Triggers in SQL
	Views (Virtual Tables) in SQL
	Specification of Views in SQL (cont’d.)
	View Implementation, View Update, and Inline Views
	View Implementation
	View Update and Inline Views
	View Update and Inline Views (cont’d.)
	Schema Change Statements in SQL
	The ALTER Command
	The ALTER Command (cont’d.)
	Summary

