204320 - Database Management

Chapter 5

More SQL: Complex Queries,
Triggers, Views, and Schema
Modification

Adapted for 204320

by Areerat Trongratsameethong

Addison-Wesley
is an imprint of

W Copyright© 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 5 Outline

More Complex SQL Retrieval Queries
More Complex SQL Insert, Update, and Delete

Specifying Constraints as Assertions and
Actions as Triggers

Views (Virtual Tables) in SQL
Schema Change Statements in SQL

More Complex SQL Retrieval Queries

« Additional features allow users to specify
more complex retrievals from database:
— Nested queries
— Joined tables
— Quter joins
— Aggregate functions and grouping

Comparisons Involving NULL
and Three-Valued Logic

Meanings of NULL

— Unknown value: 1§en

— Unavailable or withheld value: 1:1s1iuninan
— Not applicable attribute: LitAgadewaelaiile

Each individual NULL value considered to be
different from every other NULL value

SQL uses a three-valued logic:
— TRUE, FALSE, and UNKNOWN

Comparisons Involving NULL
and Three-Valued Logic (cont’d.)

Table 5.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
(c) NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

Comparisons Involving NULL
and Three-Valued Logic (cont’d.)

* SQL allows queries that check whether an attribute .
value is NULL: &350 04@&9 SOL @T3988UAN
Auaglu attribute Judu NULL wiald lag
Eenasaanansusn
— IS orIS NOT NULL

Query 18. Retrieve the names of all employees who do not have supervisors.

ais: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn 1S NULL;

Nested Queries, Tuples,
and Set/Multiset Comparisons
* Nested queries: isznauaag 2 dau Aa query @'qu‘ﬁl@q
aulu uaz query daufiagduuan

— Complete select-from-where blocks within WHERE
clause of another query: daunagsulu Aa select-from-

where 17;@@:1/1’5\1 keyword WHERE
— Outer query: query gufiagfuuen
* Comparison operator IN: operator g
WIBULNBUIZAING outer WAZ inner

— Compares value v with a set (or multiset) of values V
— Evaluates to TRUE if v is one of the elementsin V |

Nested Queries (cont’d.)

Q4A: SELECT DISTINCT Prumber
FROM PROJECT
WHERE Pnumber(iN)
(SELECT Pnumber .

doa v s o
]-| w99 Pnumber 498 einlaignn

w3suisy Pnumber nu

FROM PROJECT, DEPARTMENT, EMPLOYEE Haswifldain
WHERE Dnum=Dnumber AND nested SELECT
Mgr_ssn=Ssn AND Lname="Smith’) fwhn 1
OR - OR
Pnumbe
(SELECT Pno naswsldan
FROM WORKS_ON, EMPLOYEE nested SELECT
WHERE Essn=Ssn AND Lname="‘Smith’); faudl 2
ZERERNE1 WAANS (nested/inner)
HAAWT (Outer) daufi 1
[Prumber | .
(@) 1 HARNE gAYy
@ 2 onumber |
3 1
4 WAANT (nested/inner) 2
© Fudl 2 5
n 2

5

Nested Queries (cont’d.)

* Use tuples of values in comparisons

— Place them within parentheses: mngasnisufzauiiey
1 nnan 1 attribute Tlanady

AWIBLIAA: Aaw Select 1n field (33um9 Pno uaz Hours)
LIS 4

. o & 2 > . & o
Lmuaawmﬂmnlwmm Lanne field NITYNRII keyword
SELECT

SELECT DISTINCT Essn
FROM WORKS_ON

WHERE (Pno, Hours) IN ({ SELECT Pno, Hours
FROM WORKS_ON
WHERE Essn=123456789");

The following SQL statement selects all customers with a City of "Paris" or "London ".

SELECT * !/ waaINN fields Va9 Customers

FROM Customers
WHERE City IN ('Paris','London'); //w3uuifivy field city Aldry Paris waz London

9

Nested Queries (cont’d.)

* Use other comparison operators to compare a
single value v
—= ANY (or= SOME) operator

* Returns TRUE if the value v is equal to some value in
the set V and is hence equivalent to IN

— Other operators that can be combined with ANY
(or SOME): >, >=, <, <=, and <>

SELECT Lname, Fname uasnEAe winuAdGuidan
FROM EMPLOY&ED/) wnnimnauiagluunun
WHERE Salary > (SELECT Salary mnmamqs °
FROM EMPLOYEE
WHERE Dno=5);

14 Salary > SOME #3a

Salary > ANY
WaaWTAe winawidGuidan

WHERE Salary = ANY (SELECT ...) is the same as
WHERE Salary = SOME (SELECT ...) is the same as

mnniﬂmaﬂuﬁaaﬁflmmun
WHERE Salary IN (SELECT ...)

wuuLeY 5 10

Nested Queries (cont’d.)

* Avoid potential errors and ambiguities

— Create tuple variables (aliases) for all tables referenced in
SQL query

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname]_ .
‘¢ records ¥89 EMPLOYEE

FROM EMPLOYEE AS E
WHERE ESsnIN (SELECT Essn & records 189
FROM DEPENDENT AS D| pDEPENDENT
WHERE E.Fname=D.Dependent_name
11% join unule AND E.Sex=D.Sex);\
E.Fname
D.Dependent_name
31N outer

37N inner

Q16A: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.Ssn=D.Essn AND E.Sex=D.Sex
AND E.Fname=D.Dependent_name;

Correlated Nested Queries

* Correlated nested query
— Evaluated once for each tuple in the outer query
* EXISTS function
— Check whether the result of a correlated nested query is
empty or not

@ [. 1 & %3 & e
— @9599Fay outer AL inner a 1981w inner ud 111 return True [sidasiFalsis

i
record §AN182a9 inner
U http://www.dba-oracle.com/t_in_vs_exists_sql.htm

The Oracle documentation notes that:
SELECT * “If the selective predicate is in the subquery, then use
FROM customers IN. If the selective predicate is in the parent query, then

use EXISTS.»
WHERE EXISTS (SELECT *
FROM order_details
WHERE customers.customer_id = order_details.customer_id);

v

> ane17# order 1u order_details az'l3filel (valwlatsian 1 order) .

The EXISTS and UNIQUE Functions in SQL

* EXISTSand NOT EXISTS

— Typically used in conjunction with a correlated nested query

SELECT *
FROM Customers
WHERE NOT EXISTS (SELECT *
FROM order_details
WHERE customers.customer_id = order_details.customer_id);

> gnenfilaidl order lu order_details

e SQL function UNIQUE (Q)

— Returns TRUE if there are no duplicate tuples in the result of
query Q

SELECT *
FROM Student as S
WHERE Unique (SELECT CourselD
FROM Enroll as E
WHERE S.StudentID = E.StudentID);

S undnsfasnzidouuaazsnsiviasadsn 13

Explicit Sets and Renaming of
Attributes in SQL

* Can use explicit set of values in WHERE clause

* Use qualifier AS followed by desired new
name

— Rename any attribute that appears in the result of
a query

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

Joined Tables in SQL and Outer Joins

* Joined table

— Permits users to specify a table resulting from a
join operation in the FROM clause of a query

* The FROM clause in Q1A

— Contains a single joined table

Q1A; SELECT Fname, Lname, Address
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="Research’;

SELECT Customers.CustomerName, Orders.OrderlD
FROM Customers INNER JOIN Orders ON Customers.CustomerlD=Orders.CustomeriD
ORDER BY Customers.CustomerName;

Joined Tables in SQL and Outer
Joins (cont’d.)

» Specify different types of join
— NATURAL JOIN
— Various types of OUTER JOIN
 NATURAL JOIN on two relations Rand S
— No join condition specified

— Implicit EQUIJOIN condition for each pair of
attributes with same name from R and S

Joined Tables in SQL and Outer Joins (cont’d.)

* Inner join
— Default type of join in a joined table

— Tupleis included in the result only if a matching tuple exists in
the other relation

e LEFT OUTER JOIN
— Every tuple in left table must appear in result

— If no matching tuple
* Padded with NULL values for attributes of right table
* RIGHT OUTER JOIN
— Every tuple in right table must appear in result
— If no matching tuple
» Padded with NULL values for the attributes of left table
* FULL OUTERJOIN
* Can nest join specifications

Joined Tables in SQL and Outer Joins (cont’d.)

SELECT
FROM employee LEFT OUTER JOIN department
ON employee.DepartmentID - department.DepartmentID;

Reference http://en.wikipedia.org/wiki/Join_(SQL)

Employee.LastName Employee.
Employee table Department table Jones 33 Engineering 33
Rafferty 31 Sales 31
LastName | DepartmentiD DepartmentID | DepartmentName Robinson w Clercal ™
Rafferty 31 31 sales Smith 31 Clerical 34
wiiams o e
Jones 33 33 Engineering Heisenberg 33 Engineering 33
Heisenberg 33 34 Clerical SELECT
FROM employee RIGHT OUTER JOIN department

Robinson 34 35 Marketing ON employee.DepartmentID - department.DepartmentID;

Smith 34 Employee.LastName Empl
. Smith 34 Clerical 34
Williams NULL Jones 23 Engineering 33
Robinson 34 Clerical 34
Heisenberg 33 Engineering 33
Rafferty 31 Sales 31
SELECT WL o Marketing 35

FROM employee FULL OUTER JOIN department
ON employee.DepartmentID - department.DepartmentID;
Employee.LastName P Def D Def Dey Def Def D

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

wiams

Heisenberg a3 Engineering 33
Rafferty k! Sales 3 18

Marketing 35

More Complex SQL - Insert, Update, Delete

* More complex of insert command:

INSERT INTO first_table_name [(columnl, column2, ..., columnN)]

SELECT columnl, columnz2, ..., columnN
FROM second_table_name

[WHERE condition];

INSERT INTO Customers (CustomerName, Country)
SELECT SupplierName, Country
FROM Suppliers;

INSERT INTO Customers (CustomerName, Country) Reference:
SELECT SupplierName, Country http://www.w3schools.com/sql/
FROM Suppliers
WHERE Country="Germany';

PostgreSQL: Insert multiple rows

INSERT INTO films (code, title, did, date_prod, kind) VALUES :t‘:f‘_"‘/;e"m:) tutorial.com/
('B6717', 'Tampopo', 110, 11985-02-10', 'Comedy’), postgrosalupdatedoint 1 |
(HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy’);

More Complex SQL - Insert, Update, Delete

* More complex of update command:

UPDATE ips
SET countryid = (select countryid from country where ips.iso=country.iso);

UPDATE country p, ips pp
SET pp.countryid = p.countryid
WHERE pp.iso = p.iso;

UPDATE [table1_name] AS t1 INNER JOIN [table2_name] AS t2 ON t1.[column1_name] = t2.[column1_name]
SET t1.[column2_name] = t2.[column2_name];

UPDATE business AS b INNER JOIN business_geocode AS g ON b.business_id = g.business_id
SET b.mapx = g.latitude, b.mapy = g.longitude
WHERE (b.mapx =" or b.mapx = 0) and g.latitude > 0;

PostgreSQL
UPDATE A Reference:
SET A.c1 = expresion http://www.postgresqltutorial.com/postgresql-update-join/
FROM B

WHERE A.c2 = B.c2;

20
Reference: http://dba.stackexchange.com/questions/21152/how-to-update-one-table-based-on-another-tables-values-on-the-fly

More Complex SQL - Insert, Update, Delete

* Additional features allow users to specify more
complex of delete command:

DELETE t1,t2 DELETE a1, a2
FROM t1 INNER JOIN t2 INNER JOIN t3 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE t1.id=t2.id AND t2.id=t3.id; WHERE a1.id=a2.id;

DELETE w
FROM WorkRecord2 w INNER JOIN Employee e ON EmployeeRun = EmployeeNo
WHERE Company ='1' AND Date = '2013-05-06"

DELETE WorkRecord2, Employee
FROM WorkRecord2 INNER JOIN Employee ON (EmployeeRun = EmployeeNo)
WHERE Company ='1' AND Date = '2013-05-06";

PostgreSQL Reference:

http://www.postgresgltutorial.com/postgresql-update-join/

DELETE FROM films USING producers
WHERE producer_id = producers.id AND producers.name = 'foo';

DELETE FROM films
WHERE producer_id IN (SELECT id FROM producers WHERE name = 'foo’');

Aggregate Functions in SQL

* Used to summarize information from multiple
tuples into a single-tuple summary

* Grouping: Tayasgluanniungs

— Create subgroups of tuples before summarizing
* Built-in aggregate functions

— COUNT, SUM, MAX, MIN, and AVG

e Functions can be used in the SELECT clause
or in a HAVING clause

21 22
Reference: http://stackoverflow.com/questions/16481379/how-to-delete-using-inner-join-with-sql-server
. . ’d .
Aggregate Functions in SQL (cont’d.) Grouping: The GROUP BY and HAVING Clauses
+ NULL values discarded when aggregate functions are applied * Partition relation into subsets of tuples
to a particular column: A1 NULL azlsignsouiide aggregation — Based on grouping attribute(s)
function 147y column 5y &1 Salary u NULL uazld Wardu — Apply function to each such group independently
Average 71 NULL azlsignsax * GROUP BY clause SELECT state, COUNT(state),
EMPLOYEE i DEPARTMENT _ i : : COUNT(*)
Fname | Minit | Lname Ssn Bdale Address Sex |Salary | Super_ssn | Dno Dname Drumber Mgr_ssn Magr_start_date SpeCIfIES _gTO.Uplng attrl_butes) FROM publishers
John B | Smith | 123456780 | 1065-01-00 731 Fondren, Houston, TX| M |30000 [333445555 | 5 Research 5 333445555 1988-05-22 ° If NULLS eX|St n grouplng attnbute GROUP BY state;
Frankin | T | wong | 333445565 | 1955-12-08 |638 Voss, Houston, TX__| M_[40000 [888665555 | 5 dministrati 4 087654321 1005-01-01 .
Aicia | J | zelaya [0908er7rr | 1068-01-19 [3921 Castle, Spring, Tx_| £ [26000 [os7e54321 | 4 Headquarters 1 989665555 | 1081-06-19 — Separate group created for all tUP|ES with a NULL state COUNT(state) COUNTC®)
Jenniter | S | Wallace | 087654321 | 1941-08-20 [201 Beny, Bellaie, X [£ [43000 [s8as6s55s | 4 value in grouping attribute 0 e
Ramesh | K | Marayan | 666884444 | 1062-00-15 | 075 Fire Ok, Humble, TX | M 38000 [323445555 | 5 . HULL @ 1
Joyce | A | English | 453453453 | 1972-07-31 |5631 Rica, Houston, TX_| F_ 25000 [333445655 | 5 Q21: SELECT COUNT (%) i 2 2
Anmad | v | Jabbar | 987087987 | 1060-03-20 | 080 Dalles, Houston, TX | M_|25000 |0B7654321 | 4 FROM EMPLOYEE; Q}Iew 2d. Forgychidepartment, fefrievethedepartment pumberahenunher 1 1
Tames | E |20 | 220085505 | 1927 1110 | 450 Stone, Howsion 7| M |55000 |NULL ; z of employees in the department, and their average salary.

Query 20. Find the sum of the salaries of all employees of the ‘Research’
department, as well as the maximum salary, the minimum salary, and the aver-
age salary in this department.

020: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHERE Dname="‘Research’;
Q22: SELECT COUNT (%)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME="‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q24: SELECT Dno, COUNT (*), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dnos

Fname |Minit | Lname Ssn -+ |Salary | Super_ssn | Dno Dno (Count (%) | Avg (Salary)

John B Smith 123456789 30000 | 333445555 5 3 4 33250

Franklin T Wong 333445555 40000 | 888665555 5 4 3 31000

Ramesh | K Narayan | 666884444 38000 | 3334455595 o 1 1 55000

Joyce A English | 453453453 |- --| 25000 | 333445555 5 || Resuit of Q24

Alicia] Zelaya | 999887777 25000 | 987654321 4 |

Jennifer s Wallace | 987654321 43000 | 888665555 4

Ahmad v Jabbar | 987987987 25000 | 987654321 4

James E | Bong 888665555 55000 | NULL 1] 24

Grouping EMPLOYEE tuples by the value of Dno

Grouping: The GROUP BY and HAVING Clauses (cont’d.)
* HAVING clause

— Provides a condition on the summary information

Query 26. For each project on which more than two employees work, retrieve
the project number, the project name, and the number of employees who work
on the project.

Q26: SELECT Prumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber=Pno
GROUP BY Pnumber, Pname
HAVING COUNT (*) > 2;

After applying the WHERE clause but before applying HAVING.

Pname Pnumber |[---| Essn Pno | Hours These groups are not selected by
ProduciX 1 123456789 1 325 the HAVING condition of Q26.
ProductX 1 453453493 1 20.0
ProductY 2 123456789 2 725 ||
ProductY 2 453453453 | 2 200 Pname Prumber |---| Essn Pno | Hours Pname Gount (1)
ProductY 2 333445555 | 2 10.0 ProductY 2 123456789 | 2 75 J_I—> ProductY 3
ProductZ 3 666884444 3 40.0 ProductY 2 453453453 | 2 | 20.0 Computerization | 3
ProductZ 3 333445555 | 3 100 ProductY 2 333445565 | 2 | 100 Reorganization 3
Computorization 0 333435555 10 100 Computerization 10 333445555 | 10 | 100 }J‘ Newbenefis 3
. C 10 --| 909887777 | 10 | 100 Rosul of 026

Computerization 10 999887777 | 10 10.0 < I 987087987 | 10 | 950 (Pnumber not shown)
Computerization 10 987987987 | 10 35.0 R 20 333445555 | 20 100
Reorganization 20 333445555 20 100 [Reorganization 20 987654321 | 20 150 }
Reorganization 20 987654321 | 20 15.0 Reorganization 20 888665655 | 20 | NULL
Reorganization 20 888660000 20 NULL | | 30 987987987 | 30 5.0]
Newbenefits 30 9687987987 | 30 50 || 0 967694521 | 50 | 200

Newbenefits 30 999867777 | 30 | 30.0
Newbensfits 0 967654321 | 30 200 After applying the HAVING clause condition
Newbenefits 30 999887777 | 30 30.0 25

Grouping: The GROUP BY and HAVING
Clauses (cont’d.)

Query 28. For each department that has more than five employees, retrieve
the department number and the number of its employees who are making
more than $40,000.

Qz2s8: SELECT Dnumber, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno AND Salary>>40000 AND
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING

COUNT (*) > 5)

EMPLOYEE DEPARTMENT
Frame | Minit | Lname Ssn Bdata Addrass Sox |Salary | Super_ssn | Dno Dnama Dnumber Mgr_ssn Mgr_start date
John B | Smith | 123456780 | 1065-01-00 731 Fondren, Houston, TX| M _|30000 333445555 | 5 Resaarch 5 333445555 1088-05-22
Frankiin | T | wong | 333445655 | 1955-12-08 |638 Voss, Houston, TX__ | M |40000 5 4 987654321 1995-01-01
Alicia J | Zelaya | 900887777 | 1068-01-10 |3321 Castle, Spring. TX | F |25000 |087654321 | 4 Headquartars 1 388665555 1081-06-10
Jennifer | S | Wallace | 987654321 | 1941-06-20 |201 Berry, Bellaie, TX | F |43000 |888665555 | 4

Ramesh| K | Narayan | 686884444 | 1962-09-15 | 075 Fire Oak, Humble, TX | M |38000 [323445555 | 5

Joyjca | A | English [452452453 [1072-07-31 5621 Rice, Houston, X | F [25000 [333445555 | 5

Ahmad | v | Jabbar | 887887087 [1080-03-20 | 080 Dallas, Houston, TX | M [25000 [eB7e543zt | 4 26
James | E |Borg | @B8665555 | 1037-11-10 |450 Stons, Houston, TX | M |55000 |NULL 1

Discussion and Summary of SQL
Queries

SELECT <attribute and function list>
FROM <table list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]

[ORDER BY <attribute list>];

27

Specifying Constraints as
Assertions and Actions as Triggers

* CREATE ASSERTION

— Specify additional types of constraints outside
scope of built-in relational model constraints

* CREATE TRIGGER

— Specify automatic actions that database system
will perform when certain events and conditions
occur

28

Specifying General Constraints as

Assertions in SQL
e CREATE ASSERTION

— Specify a query that selects any tuples that violate
the desired condition

— Use only in cases where it is not possible to use
CHECK on attributes and domains

General Syntax: CREATE ASSERTION <name> CHECK(<condition>)

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS (SELECT
FROM EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D
WHERE E.Salary>M.Salary
AND E.Dno=D.Dnumber
AND D.Mgr_ssn=M.Ssn)); 29

Introduction to Triggers in SQL

* CREATE TRIGGER statement
— Used to monitor the database
* Typical trigger has three components:
— Event(s): e.g. insert, update
— Condition
— Action: a sequence of SQL statements

CREATE TRIGGER salary_trigger
BEFORE UPDATE ON employee_table REFERENCING NEW ROW AS n, OLD ROW AS o
FOR EACH ROW IF n.salary <> o.salary THEN

END IF; ;

Reference: http://en.wikipedia.org/wiki/Database_trigger

Views (Virtual Tables) in SQL

e Concept of a view in SQL
— Single table derived from other tables
— Considered to be a virtual table
* CREATE VIEW command
— Give table name, list of attribute names, and a
query to specify the contents of the view

Vi: CREATEVIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn AND Pno=Pnumber;

V2: CREATEVIEW DEPT_INFO(Dept _name, No_of emps, Total sal)
AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno
GROUP BY Dname; 31

Specification of Views in SQL
(cont’d.)

* Specify SQL queries on a view
* View always up-to-date

— Responsibility of the DBMS and not the user
« DROP VIEW command

— Dispose of a view

View Implementation, View Update, and Inline Views

* Complex problem of efficiently implementing
a view for querying
* Query modificationapproach
— Modify view query into a query on underlying
base tables

— Disadvantage: inefficient for views defined via

complex queries that are time-consuming to
execute (nsdl join wane table azldnauu)

Vi: CREATE VIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON SELECT Fname, Lname
WHERE Ssn=Essn AND Pno=Pnumber; ‘ FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber

Qavi: SELECT Fname, Lname
FROM WORKS_ON{
WHERE Pname="ProductX’;

AND Pname="ProductX’;
33

View Implementation

* View materialization approach

— Physically create a temporary view table when the
view is first queried

— Keep that table on the assumption that other
queries on the view will follow

— Requires efficient strategy for automatically
updating the view table when the base tables are
updated

* Incremental update strategies

— DBMS determines what new tuples must be
inserted, deleted, or modified in a materialized
view table "

View Update and Inline Views

* Update on a view defined on a single table without
any aggregate functions
— Can be mapped to an update on underlying base table
* View involving joins
— Often not possible for DBMS to determine which of the
updates is intended

(@ UPDATEWORKS_ON dd . o
SET Pro= (SELECT Pnumber n13 Update Base Table niingqvainy UV1

@ o A a o
FROM PROIECT . UV1 az6290n Update d18 G9a1afinayin
WHERE Pname—"ProductY”) U

WHERE Essn IN (SELECT Sen

FROM EMPLOYEE N ISR
WHERE Lname="Smith’ AND Frame="John') | | 41383 a’lﬂﬁlivlﬂ‘lla&‘llaﬂvl&lq‘ﬂﬂmvlﬂ

dv a a

14 View 8ufid1988s UV udlddayasing

AND

Pno { SELECT Pnumber
FROM PROJECT
WHERE Pname="ProductX’); Uvi: UPDATEWORKS_ON1 R
SET Pname = ‘ProductY
(b): UPDATEPROJECT SET Pname = “Producty’ WHERE Lname="Smith’ AND Frame="John’
WHERE Pname = "ProductX’; AND Pname="ProductX’;

View Update and Inline Views (cont’d.)

* Clause WITH CHECK OPTION

— Must be added at the end of the view definition if
a view is to be updated

CREATE VIEW VW_TechnicianEmployees . .
AS SELECT EmployeelD, Title, Managerip | UPPATE VW_TechnicianEmployees
SET Title = 'Chief’
FROM HumanResources. Employee WHERE EmploveelD=13
WHERE Title LIKE '%technician%' ploy

WITH CHECK OPTION;
* In-line view
— Defined in the FROM clause of an SQL query

— lfanArnududaunas Query

Inline View Example http://www.orafaq.com/wiki/Inline_view

Schema Change Statements in SQL

Schema evolution commands

— Can be done while the database is operational

— Does not require recompilation of the database schema

DROP command

— Used to drop named schema elements, such as tables,
domains, or constraint

Drop behavior options:

— CASCADE and RESTRICT

Example:

— DROP SCHEMA COMPANY CASCADE;

* CASCADE Automatically drop objects (tables, functions,
etc.) that are contained in the schema.

* RESTRICT Refuse to drop the schema if it contains any
objects. This is the default.

The ALTER Command

* Alter table actions include:
— Adding or dropping a column (attribute)
— Changing a column definition
— Adding or dropping table constraints

e Example:

—ALTER TABLE COMPANY.EMPLOYEE ADD
COLUMN Job VARCHAR (12);

e To drop a column
— Choose either CASCADE or RESTRICT

The ALTER Command (cont’d.)

* Change constraints specified on a table
— Add or drop a named constraint

ALTER TABLE COMPANY.EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Summary

* Complex SQL:

— Nested queries, joined tables, outer joins,
aggregate functions, grouping

e CREATE ASSERTION and CREATE
TRIGGER
* Views

— Virtual or derived tables

