Introduction to Data Science

Last Update: 19 DEC 2020

Chapter 3 Descriptive Analysis

Papangkorn Inkeaw, PhD

Outline

Descriptive Analysis

- 1. Descriptive Statistics with Pivot Tables
 - Mean, Median and Mode
 - Variance and Standard Deviation
 - Skewness and Kurtosis
 - Covariance Matrix
- 2. Cluster Analysis
 - Distances
 - K-means Clustering
 - Hierarchical Clustering
 - Density-based Spatial Clustering
- 3. Association Analysis
 - Itemset Mining
 - Association Rules

Descriptive Statistics with Pivot Tables

Descriptive Statistics with Pivot Tables

A distribution in statistics is a function that shows:

- the possible values for a variable (x-axis)
- how often they occur (yaxis).

Descriptive Statistics with Pivot Tables

Mean

- A measure of a central or typical value for a probability distribution.
- The sum of all measurements divided by the number of observations in the data set.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12 Mean of job performance:

$$\bar{x} = \frac{7+10+11+15+10+10+12+14+16+12}{10} = \frac{117}{10} = 11.7$$

Descriptive Statistics with Pivot Tables

Median

- Reflect the central tendency of the sample in such a way that it is uninfluenced by extreme values or outliners.
- The middle value that separates the higher half from the lower half of the data set.
- To compute the middle value, we need to arrange all the numbers from smallest to greatest.
- Then,

$$\tilde{x} = \begin{cases} x_{\underline{(n+1)}}, & \text{if } n \text{ is odd,} \\ \frac{\left(x_{\underline{(n)}} + x_{\underline{(n+1)}}\right)}{2}, & \text{if } n \text{ is even,} \end{cases}$$

Example:

n = 10. So, n is even Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12 $x_5 + x_6 = 11 + 12$ Median of job performance: = 11.5 $\tilde{x} =$ 11.5 7 10 10 10 11 12 12 14 15 16 x_5 x_6

Descriptive Statistics with Pivot Tables

Mode

• The most frequent value in the data set.

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12 Mode of job performance:

Descriptive Statistics with Pivot Tables

Geometric visualization of the mode, median and mean of an arbitrary probability density function

Source: <u>https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa</u>

Descriptive Statistics with Pivot Tables

Recall:

Provides	Categorical Attribute		Numerical Attribute		
	Nominal	Ordinal	Interval-scaled	Ratio-scaled	
Mode	/	/	/	/	
Median		/	/	/	
Mean			/	/	

Descriptive Statistics with Pivot Tables

	IQ	Job performance	
	<i>X</i> ₁	<i>X</i> ₂	
x ₁	99	7	
X ₂	105	10	
x ₃	105	11	
\mathbf{x}_4	106	15	
x ₅	108	10	
x ₆	112	10	
X ₇	113	12	
x ₈	115	14	
X 9	118	16	
x ₁₀	134	12	
Mean		11.7	
Median		11.5	
Mode		10	

Quiz: Find the mean, median and mode of IQ.

Descriptive Statistics with Pivot Tables

Standard Deviation (SD, s)

- A measure that is used to quantify the amount of variation or dispersion of a set of data values.
- A low standard deviation indicates that the data points tend to be close to the mean.
- A high standard deviation indicates that the data points are spread out over a wider range of values.

Descriptive Statistics with Pivot Tables

Standard Deviation (SD, s)

The formula for the sample standard deviation is

Descriptive Statistics with Pivot Tables

Variance (σ)

- How far a set of numbers are spread out from their average value.
- It is the square of the standard deviation

$$\operatorname{var}(X) = s^{2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Descriptive Statistics with Pivot Tables

Example

- Job performance; X={7, 10, 11, 15, 10, 10, 12, 14, 16, 12}
- Mean of job performance \bar{x} : 11.7

• Standard Deviation;
$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2} = 2.71$$

• Variance;
$$var(X) = SD^2 = 2.71^2 = 7.34$$

Job performance x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
7	-4.7	22.09
10	-1.7	2.89
11	-0.7	0.49
15	3.3	10.89
10	-1.7	2.89
10	-1.7	2.89
12	0.3	0.09
14	2.3	5.29
16	4.3	18.49
12	0.3	0.09
$\sum_{i=1}^n (x_i - \bar{x})$	66.1	
$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - $	2.71	

Descriptive Statistics with Pivot Tables

	IQ X1	Job performance X_2
X ₁	99	7
x ₂	105	10
X ₃	105	11
x ₄	106	15
x ₅	108	10
x ₆	112	10
X ₇	113	12
x ₈	115	14
X 9	118	16
x ₁₀	134	12
Mean	111.5	11.7
SD		2.71
Variance		7.34

$$\operatorname{var}(X) = s^{2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Quiz: Find the SD and variance of IQ.

Skewness and Kurtosis

Descriptive Statistics with Pivot Tables

Skewness

- Skewness is usually described as a measure of a dataset's symmetry or lack of symmetry.
- The normal distribution has a skewness of 0.

Source: <u>https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa</u>

Skewness and Kurtosis

Descriptive Statistics with Pivot Tables

Kurtosis

- Measures the tail-heaviness of the distribution.
- The excess kurtosis for a standard normal distribution is 0.

Source: https://www.statext.com/android/kurtosis.html

Descriptive Statistics with Pivot Tables

and display them as a scatter plot

Descriptive Statistics with Pivot Tables

Covariance

- How much two random variables vary together.
- The covariance of random variables X and Y, denoted by cov(X, Y) can be computed by:

$$\operatorname{cov}(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• The value of covariance lies between $-\infty$ and $+\infty$.

Descriptive Statistics with Pivot Tables

Example

	IQ X	Job performance Y	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	18 兴 16		•		
x ₁	99	7	-12.5	-4.7	58.75	ue 14	•			
x ₂	105	10	-6.5	-1.7	11.05	erfor 12				
x ₃	105	11	-6.5	-0.7	4.55	q 9 10	•			
\mathbf{x}_4	106	15	-5.5	3.3	-18.15	_ 10				
x ₅	108	10	-3.5	-1.7	5.95	8 1(00 110	120	130	140
x ₆	112	10	0.5	-1.7	-0.85			IQ		
X ₇	113	12	1.5	0.3	0.45					
x ₈	115	14	3.5	2.3	8.05		1	$\sum_{n=1}^{n}$		
X 9	118	16	6.5	4.3	27.95	cov($(X,Y) = \frac{1}{n-1}$	$\sum_{i=1}^{n} (x_i - $	$(\bar{x})(y_i -$	(\bar{y})
x ₁₀	134	12	22.5	0.3	6.75		104	l=1		
Mean	111.5	11.7		SUM	104.5	COV	$(X,Y) = \frac{1}{Q}$	$\frac{1}{1} = 11$	61	

What dose it mean?

Descriptive Statistics with Pivot Tables

Covariance

Source: https://acadgild.com/ blog/covariance-andcorrelation

A **positive covariance** means both variables tend to move upward or downward in value at the same time. A negative covariance

means the variables will move away from each other. A **zero covariance** means there is no relationship.

Descriptive Statistics with Pivot Tables

Correlation

- Unit measure of change between two variables change with respect to each other.
- A normalized form of covariance.

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{s_X s_Y}$$

- The value of correlation lies between -1 and +1.
 - If the correlation coefficient is <u>one</u>, it means that if one variable moves a given amount, the second moves proportionally in the same direction.
 - If correlation coefficient is zero, no relationship exists between the variables.
 - If correlation coefficient is <u>-1</u>, it means that one variable increases, the other variable decreases proportionally.

Descriptive Statistics with Pivot Tables

The value of covariance lies between -1 and +1.

- If the correlation coefficient is <u>one</u>, it means that if one variable moves a given amount, the second moves proportionally in the same direction.
- If correlation coefficient is zero, no relationship exists between the variables.
- If correlation coefficient is <u>-1</u>, it means that one variable increases, the other variable decreases proportionally.

Descriptive Statistics with Pivot Tables

Example

	IQ X	Job performance Y
x ₁	99	7
x ₂	105	10
x ₃	105	11
\mathbf{x}_4	106	15
x ₅	108	10
x ₆	112	10
X ₇	113	12
x ₈	115	14
X 9	118	16
x ₁₀	134	12
Mean	111.5	11.7
SD	9.70	2.71

$$cov(X,Y) = 11.61$$

$$corr(X,Y) = \frac{cov(X,Y)}{s_X s_Y} = \frac{11.61}{9.70 \times 2.71} = \frac{11.61}{26.287} = 0.44$$

IQ

Descriptive Statistics with Pivot Tables

Example	9	
	IQ X	Job performance Y
x ₁	99	7
x ₂	105	10
x ₃	105	11
\mathbf{x}_4	106	15
x ₅	108	10
x ₆	112	10
\mathbf{X}_7	113	12
x ₈	115	14
X 9	118	16
x ₁₀	134	12
Mean	111.5	11.7
SD	9.70	2.71

What do the covariance and correlation tell about the relation between IQ and job performance?

Descriptive Statistics with Pivot Tables

Covariance Matrix

• A matrix whose element in the *i*, *j* position is the covariance between the *i*-th and *j*-th features.

	<i>X</i> ₁	<i>X</i> ₂	 <i>X</i> ₁₀
x ₁			
\mathbf{x}_n			

$$C = \begin{array}{c} X_{1} & X_{2} & X_{10} \\ X_{1} & \left[\begin{array}{c} \cos(X_{1}, X_{1}) & \cos(X_{1}, X_{2}) & \cdots & \cos(X_{1}, X_{10}) \\ \cos(X_{2}, X_{1}) & \cos(X_{2}, X_{2}) & \cdots & \cos(X_{2}, X_{10}) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(X_{10}, X_{1}) & \cos(X_{10}, X_{2}) & \cdots & \cos(X_{10}, X_{10}) \end{array} \right]$$

Data Matrix

Covariance Matrix

Practice

Problem

 จงวาดภาพลักษณะการกระจายของข้อมูลตัวแปร sepal length พร้อมระบุ ตำแหน่งของค่า mean, median และ mode ในภาพด้วย

 ถ้าค่าสหสัมพันธ์ (Correlation) ระหว่างตัวแปร petal length และ petal width มีค่าเท่ากับ 0.96 จงบอกลักษณะความสัมพันธ์ร่วมระหว่าง 2 ตัวแปรนี้ (ไม่มีความสัมพันธ์กัน, มีความสัมพันธ์ กันใน<u>เชิงลบ</u>, มีความสัมพันธ์กันใน<u>เชิงบวก</u>)

Variable / Value	sepal length	sepal width	petal length	petal width
Mean	5.84	3.05	3.76	1.20
Median	5.80	3.00	4.35	1.30
Mode	5.00	3.00	1.50	0.20
S.D.	0.83	0.43	1.76	0.76
Skewness	0.31	0.33	- 0.27	- 0.10
Kurtosis	- 0.55	0.29	- 1.40	- 1.34

Cluster Analysis

C

C

Cluster Analysis

Finding groups of datapoints such that:

- The datapoints in the same group will be like one another.
- The datapoints in a group are different from the datapoints in other groups.
- The group of similar data points is called a **Cluster.**

Distances and Similarity

Cluster Analysis

If it is 0, it means that both objects are identical.

Distances and Similarity

Cluster Analysis

The range of score varies between 0 and 1. If score is 1, it means that they are same.

Distances and Similarity

Cluster Analysis

K-means Clustering

Cluster Analysis

K-means

Every data point is allocated to each of the clusters through <u>reducing the sum of squared error</u>.

Intra-cluster sum of squared error for a cluster:

$$\sum_{\mathbf{x}_j \in C_i} d(\mathbf{x}_j, \boldsymbol{\mu}_i)^2$$

 C_i - set of datapoints in cluster j

Sum of squared error:

 $\sum_{i=1}^{\kappa}\sum_{\mathbf{x}_j\in C_i}d(\mathbf{x}_j,\boldsymbol{\mu}_i)^2$

k – number of clusters

K-means Clustering

Cluster Analysis

How the	e k-means works	0.
STEP 1:	Identifies k number of centroids	0.
	(k is a parameter of the k-means)	
STEP 2:	Randomly initialize k centroids	0.
STEP 3:	Allocates every data point to the nearest cluster	0.
STEP 4:	Update each <u>centroid (mean)</u>	
STEP 5:	Go to STEP 3 until centroids have stabilized	0.

Source:

https://commons.wikimedia.org/wiki/File:Kmeans_convergence.gif

Hierarchical Clustering

Cluster Analysis

Agglomerative Hierarchical clustering

Iteratively merge the two closest clusters until only a single cluster remains.

Hierarchical Clustering

Cluster Analysis

How the agglomerative hierarchical clustering works

- STEP 1: Compute the proximity matrix (distance or similarity matrix)
- STEP 2: Let each data point be a cluster
- STEP 3: Merge the two closest clusters
- STEP 4: Update the proximity matrix
- STEP 5: Go to STEP 3 until only a single cluster remains

https://towardsdatascience.com/the-5clustering-algorithms-data-scientists-need-toknow-a36d136ef68

Hierarchical Clustering

Cluster Analysis

Agglomerative hierarchical clustering

- STEP 1: Compute the proximity matrix
- STEP 2: Let each data point be a cluster
- STEP 3: Merge the two closest clusters
- STEP 4: Update the proximity matrix -
- STEP 5: Go to STEP 3 until only a single cluster remains

Linkage Criteria: Distance between sets of observations

- 1. <u>Minimum</u> of the distance between points x_i and x_j such that x_i belongs to C1 and x_j belongs to C2
- 2. <u>Maximum</u> of the distance between points x_i and x_j such that x_i belongs to C1 and x_j belongs to C2
- 3. <u>Average distance of all-pair data points</u>
- 4. Distance Between Centroids
- 5. and etc.

As we merge datapoints to form a cluster (set of datapoints) How can we measure the distance/similarity between two sets?

Minimum (single-linkage clustering): 0.5 Maximum (complete-linkage clustering): 0.95 Average linkage clustering: 0.77

Cluster Analysis

Use the local density of points to determine the clusters.

- Groups together points that are closely packed together (point in <u>high-density regions</u>).
- Marking points that lie alone in <u>low-density regions</u> as outliers.

Cluster Analysis

How do we measure density of a region?

- **Density at a point** Number of points within a circle of Radius *Eps* (ϵ) from point **p**. ϵ -neighborhood: $N_{\epsilon}(\mathbf{p}) = \{\mathbf{q} \in \mathbf{D} | d(\mathbf{p}, \mathbf{q}) \le \epsilon\}$
- Dense Region For each point in the cluster, the circle with radius ε contains at least minimum number of points (*MinPts*).

Cluster Analysis

How do we measure density of a region?

• **Density at a point** - Number of points within a circle of Radius *Eps* (*ε*) from point **p**.

$$\epsilon$$
-neighborhood: $N_{\epsilon}(\mathbf{p}) = \{\mathbf{q} \in \mathbf{D} | d(\mathbf{p}, \mathbf{q}) \leq \epsilon\}$

Dense Region - For each point in the cluster, the circle with radius ε contains at least minimum number of points (*MinPts*).

A point p can be classified as:

- Core point if $|N_{\epsilon}(\mathbf{p})| \ge MinPts$
- Border point if |N_ε(**p**)| < MinPts and **p** belong to ε-neighborhood of some core point
- Noise point if p is neither a core nor a border point

Cluster Analysis

How the DBSCAN works

- STEP 1: Find ϵ -neighborhood of every point, and identify the core points
- STEP 2: Find the <u>connected components</u> of core points on the neighbor graph, ignoring all non-core points.
- STEP 3: Assign each non-core point to a nearby cluster if the cluster is an ϵ neighbor, otherwise assign it to noise.

MinPts = 4

• core points

Connected Components -

There exists an edge between two core points

Practice

Problem

A) k-mean B) Hierarchical Clustering C) DBSCAN

จงจับคู่วิธีการวิเคราะห์กลุ่มข้อมูล (ด้านบน) ที่เกี่ยวข้องกับข้อความต่อไปนี้ (อาจมีมากกว่า 1 ตัวเลือก)
 การรวมข้อมูลเป็นกลุ่มจากกลุ่มที่มีขนาดเล็กเป็นกลุ่มที่มีขนาดใหญ่ขึ้นจนกระทั่งได้จำนวนกลุ่มข้อมูลตามที่ต้องการ
 จัดข้อมูลที่อยู่ในบริเวณที่ความหนาแน่นของข้อมูลบริเวณเดียวกันให้อยู่ในกลุ่มข้อมูลเดียวกัน
 แบ่งกลุ่มข้อมูลที่ทำให้ผลรวมระยะห่างระหว่างข้อมูลในกลุ่มข้อมูลเดียวกันมีค่าน้อยที่สุด
 ต้องกำหนดจำนวนกลุ่มข้อมูลที่ต้องการเป็นพารามิเตอร์
 ต้องกำหนดรัศมีของจุดข้อมูล เพื่อคำนวณหาความหนาแน่นของข้อมูล ณ จุดข้อมูล แต่ละจุด
 จุดข้อมูลบางจุดอาจถูกจัดเข้ากลุ่มข้อมูลใดเลย แต่ถูกระบุเป็น Outliers

Association Analysis

Association Analysis

Uncover associations between items (attributes)

- How likely are two sets of items to co-occur.
- How likely are two sets of items to conditionally occur.

A prototypical application of association analysis is Market Basket Analysis

Frequent Item Sets: (Milk, Bread),
 (Banana, Apple)
 Association Rules: (Bread -> Milk)

	Banana	Milk	 Bread
x ₁			
\mathbf{x}_n			

Frequent Item Sets

Association Analysis

Items

All possible things that can be put into the basket

Example:

Items *I* = {*Banana*, *Milk*, *Apple*, *Bread*}

Item Set

- A possible combinations of elements in the baskets
- Possible things that can be <u>bought together</u>

For example: 15 possible item sets

{Banana}, {Milk}, {Apple}, {Bread} {Banana, Milk}, {Banana, Apple}, {Banana, Bread}, {Milk, Apple}, {Milk, Bread}, {Apple, Bread} {Banana, Milk, Apple}, {Banana, Milk, Bread}, {Banana, Apple, Bread}, {Milk, Apple, Bread} {Banana, Milk, Apple, Bread}

Frequent Item Sets

Association Analysis

Support

- an indication of how frequently the itemset appears in the dataset.
- The proportion of transactions in the dataset **D** that contain an item set *X*, denoted $sup(X, \mathbf{D})$

Example

$$sup(\{Milk\}, \mathbf{D}) = \frac{7}{10} = 0.7$$

$$sup(\{Banana, Apple\}, \mathbf{D}) = \frac{2}{10} = 0.2$$

$$sup(\{Milk, Apple, Bread\}, \mathbf{D}) = \frac{2}{10} = 0.2$$

Frequent Item Sets

Association Analysis

An item set X is said to be frequent in D if $sup(X, D) \ge minsup$

where *minsup* is a user defined *minimum support threshold*

sup	Item Set	
7	$\{Milk\}$	
6	{ <i>Apple</i> } and{ <i>Bread</i> }	Jent
5	{Milk,Bread}	} ter
4	{Banana}	n Se
3	{ <i>Milk</i> , <i>Apple</i> } and { <i>Apple</i> , <i>Bread</i> }	$\frac{d}{dt}$
2	{Banana, Milk} and {Banana, Apple} and {Banana, Bread} and {Milk, Apple, Bread}	—mmsup –0.5
1	{Banana, Milk, Bread} and {Banana, Apple, Bread}	

Association Analysis

Association Rule

- An expression X → Y where X and Y are item sets and they are <u>disjoint</u>.
- The customer has purchased items in the set *X* then he is likely to purchase items in the set *Y*.

Example

 $\{Milk\} \rightarrow \{Bread\}$

The customer has purchased *milk* then he is likely to purchase *bread*.

<u>Please note that</u> association rules are not commutative, i.e. $\{Milk\} \rightarrow \{Bread\}$ does not equal $\{Bread\} \rightarrow \{Milk\}$.

Association Analysis

Support of Association Rule

• The number of transaction in which both X and Y co-occur as subsets, where X and Y are item sets $sup(X \rightarrow Y) = sup(X \cup Y)$

Example

 $sup(\{Milk\} \rightarrow \{Bread\}) = sup(\{Milk, Bread\})$ $= \frac{5}{10} = 0.5$

Association Analysis

Confident of Association Rule

- Measures how much the consequent (item) is dependent on the antecedent (item)
- The conditional probability that a transaction contains *Y* given that it contains *X*

 $conf(X \to Y) = \frac{sup(X \cup Y)}{sup(X)}$

Example

$$conf(\{Milk\} \rightarrow \{Bread\}) = \frac{sup(\{Milk, Bread\})}{sup(\{Milk\})}$$
$$= \frac{0.5}{0.7} = 0.71$$

Association Analysis

A rule $X \to Y$ is said to be <u>frequent</u> if $sup(X \to Y) \ge minsup$

A rule $X \to Y$ is said to be <u>strong</u> if $conf(X \to Y) \ge minconf$

where *minsup* is a user defined *minimum support threshold minconf* is a user-specified *minimum confidence threshold*

Example

Given *minsup* = 0.3 and *minconf* = 0.5

The rule $\{Milk\} \rightarrow \{Bread\}$ is

- Frequent because $sup(\{Milk, Bread\}) = 0.5 \ge 0.3$
- Strong because $conf(\{Milk\} \rightarrow \{Bread\}) = 0.71 \ge 0.5$

	ltems							
	Banana	Milk	Apple	Bread				
x ₁	0	1	1	0				
x ₂	1	1	0	0				
X 3	0	1	0	1				
x ₄	1	0	1	0				
x ₅	0	1	1	1				
x ₆	1	1	0	1				
X ₇	0	1	1	1				
x ₈	0	0	1	0				
X 9	0	1	0	1				
x ₁₀	1	0	1	1				

Association Analysis

Lift

- Called improvement or impact
- Measure the difference measured in ratio between the confidence of a rule and the expected confidence.
- Lift of a rule $X \rightarrow Y$ is defined as

$$Lift(X \to Y) = \frac{sup(X \cup Y)}{sup(X) \times sup(Y)}$$

- $Lift(X \rightarrow Y) = 1$ means that there is no correlation within the itemset.
- $Lift(X \rightarrow Y) > 1$ means that products in the itemset, **X**, and **Y**, are more likely to be bought together.
- $Lift(X \rightarrow Y) < 1$ means that products in itemset, **X**, and **Y**, are unlikely to be bought together.

Example

$$Lift(\{Milk\} \rightarrow \{Bread\}) = \frac{sup(\{Milk\} \cup \{Bread\})}{sup(\{Milk\}) \times sup(\{Bread\})}$$
$$= \frac{0.5}{0.7 \times 0.6} = 0.19$$

	Items						
	Banana	Milk	Apple	Bread			
x ₁	0	1	1	0			
x ₂	1	1	0	0			
x ₃	0	1	0	1			
x ₄	1	0	1	0			
x ₅	0	1	1	1			
x ₆	1	1	0	1			
X ₇	0	1	1	1			
x ₈	0	0	1	0			
x 9	0	1	0	1			
x ₁₀	1	0	1	1			

Practice

- *sup*({tomato}, **D**) = ?
- *sup*({avocado}, **D**) = ?
- *sup*({tomato,avocado}, **D**) = ?
- $sup(\{tomato\} \rightarrow \{avocado\}) = ?$
- $conf(\{tomato\} \rightarrow \{avocado\}) = ?$
- ถ้ากำหนดให้ minsup = 0.25 และ minconf = 0.3 แล้ว กฏความสัมพันธ์ {tomato} → {avocado} จัดว่าเป็นกฎ ที่เกิดขึ้นบ่อย และน่าเชื่อถือหรือไม่
- $Lift(\{tomato\} \rightarrow \{avocado\}) = ?$
- นักศึกษาควรแนะนำลูกค้าให้ซื้อ avocado พร้อมกับ tomato หรือไม่

D	green grapes	avocado	tomato	corn
x ₁	0	1	1	0
x ₂	1	1	0	0
x ₃	0	1	0	1
x ₄	1	0	1	0
x ₅	0	1	1	1
x ₆	1	1	0	1
X ₇	0	1	1	1
x ₈	0	0	1	0

Further Study

• Book:

• Zaki, M., & Meira, W. (2014). Data mining and analysis : Fundamental concepts and algorithms. New York: Cambridge University Press.

• Website:

- <u>https://towardsdatascience.com/understanding-the-concept-of-hierarchical-clustering-technique-c6e8243758ec</u>
- <u>https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1</u>
- <u>https://towardsdatascience.com/dbscan-algorithm-complete-guide-and-application-with-python-scikit-learn-d690cbae4c5d</u>
- <u>https://towardsdatascience.com/market-basket-analysis-multiple-support-frequent-item-set-mining-584a311cae66</u>
- https://towardsdatascience.com/market-basket-analysis-978ac064d8c6