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Outline
Predictive Analysis

1. Predictive Analysis

• Preparing Datasets

2. Classification Analysis

• K-Nearest Neighbor

• Decision Tree

• Naïve Bayes

• Classification Assessment

3. Regression Analysis

• Linear Regression

• Polynomial Regression

• Regression Assessment

4. Time Series Analysis

• Autoregressive Model

• Moving Average Model

• Autoregressive Integrated Moving Average

• Moving Average Smoothing



Predictive PhaseTraining Phase

Predictive Analysis
Predictive Analysis

𝑋1 𝑋2 … 𝑋10

𝐱1

…

𝐱𝑛

Training Dataset

Predictive ModelTrain a predictive 
model

𝐱𝑛+1

Unseen Data

Predicted Value

Analyze current and historical data to make predictions about future or otherwise unknown events.



Preparing Dataset 
Predictive Analysis

D 𝑋1 𝑋2 … 𝑋10

𝐱1

𝐱2

𝐱3

…

𝐱𝑙

𝐱𝑙+1

𝐱𝑙+2

…

𝐱𝑛

Training dataset
• Will be used to train a predictive model.
• Target value of each data point must be available.

Test dataset
• Will be used to evaluate the predictive model
• Assume that target value of each data point is not known, but

it should be available.

Target values

𝑌

Features To perform a predictive analysis:
• We should have two dataset: training and test 

datasets. 
• The target value of each datapoint must be 

available.



Classification Analysis
Predictive Analysis

D 𝑋1 𝑋2 … 𝑋10

𝐱1

𝐱2

𝐱3

…

𝐱𝑙

𝐱𝑙+1

𝐱𝑙+2

…

𝐱𝑛

Target class

𝑌

Features

For classification analysis
• The value we want to predict is categorical 

data.

• Known as class

Example
We know some characteristics of an animal, and we want to 
predict it is a cat or a dog.

cat or dog?



Classification Analysis
Predictive Analysis

The task of classification is one of finding 
separating lines that separate classes of 
data from a training dataset as best as 
possible. 



Classification Analysis
Predictive Analysis

Number of Possible Classes

Binary Classification
• Want to distinguish only 

two categories (classes)  

Types of Classification Problems

= 2 > 2

Multi-class Classification
• Want to distinguish more 

than two categories (classes)  

Cat or Dog? Bulldog or Beagle or Shiba ?



K-Nearest Neighbor
Classification Analysis

K-Nearest Neighbor classifier assigns the 
class label of an unseen data with the 
majority class labels of k neighbor data 
(in the training dataset)    

Unseen data
5 Nearest neighbors

cat

cat
cat

dog

dog

Cat

How the k-nearest neighbor works
STEP 1: Calculate distances between an 
unseen data and training data
STEP 2: Find k nearest neighbor
STEP 3: Find majority class label
STEP 4: Assign the majority class label to 
the class label of the unseen data



Decision Tree
Classification Analysis

Weight ≥ 15 lbs ?

Height ≥ 9 in ?

nose size ≥ 1.5 cm ?

dog

dog

dog cat

TRUE

FALSETRUE

TRUE

FALSE

FALSE

Every node in the tree asks a question 
about one feature of a data point.

Unseen data
Weight: 18 lbs
Height: 9 in
nose size: 1.3 cm

So, it is a cat.



Decision Tree
Classification Analysis

STEP 1: Given a training data D, find the single 
feature (and cutoff for that feature, if it’s 
numerical) that best partitions your data 
into classes.

STEP 2: This single best feature/cutoff becomes 
the root of your decision tree.

STEP 3: Partition D up according to the root node.
STEP 4: Recursively train each of the child nodes 

on its partition of the data until all of the 
data points in the partition have the same 
label.

Construct a decision tree 

D Weight Height Nose size Label

𝐱1 8 8 1.6 Dog

𝐱2 50 40 3 Dog

𝐱3 8 9 1.3 Cat

𝐱4 15 12 2.5 Dog

𝐱5 9 9.8 1.4 Cat

Weight ≥ 15 lbs ?

FALSETRUE

D Weight Height Nose size Label

𝐱2 50 40 3 Dog

𝐱4 15 12 2.5 Dog

D Weight Height Nose size Label

𝐱1 8 8 1.6 Dog

𝐱3 8 9 1.3 Cat

𝐱5 9 9.8 1.4 Cat



Decision Tree
Classification Analysis

STEP 1: Given a training data D, find the single feature 
(and cutoff for that feature, if it’s numerical) 
that best partitions your data into classes.

STEP 2: This single best feature/cutoff becomes the root 
of your decision tree.

STEP 3: Partition D up according to the root node.
STEP 4: Recursively train each of the child nodes on its 

partition of the data until all of the data points 
in the partition have the same label.

Construct a decision tree 

Weight ≥ 15 lbs ?

FALSE

D Weight Height Nose size Label

𝐱1 8 8 1.6 Dog

𝐱3 8 9 1.3 Cat

𝐱5 9 8.5 1.4 Cat

Height ≥ 9 in ?

TRUE FALSE

D Weight Height Nose size Label

𝐱3 8 9 1.3 Cat

D Weight Height Nose size Label

𝐱1 8 8 1.6 Dog

𝐱5 9 8.5 1.4 Cat



Decision Tree
Classification Analysis

STEP 1: Given a training data D, find the single feature 
(and cutoff for that feature, if it’s numerical) 
that best partitions your data into classes.

STEP 2: This single best feature/cutoff becomes the root 
of your decision tree.

STEP 3: Partition D up according to the root node.
STEP 4: Recursively train each of the child nodes on its 

partition of the data until all of the data points 
in the partition have the same label.

Construct a decision tree 
Height ≥ 9 in ?

FALSE

D Weight Height Nose size Label

𝐱1 8 8 1.6 Dog

𝐱5 9 8.5 1.4 Cat

nose size ≥ 1.5 cm ?

TRUE FALSE

D Weight Height Nose size Label

𝐱1 8 8 1.6 Dog

D Weight Height Nose size Label

𝐱5 9 8.5 1.4 Cat



Decision Tree
Classification Analysis

The most common ones are:
• Information gain
• Gini impurity.

How to determine the best feature and cutoff 

Weight ≥ 15 lbs ?

FALSETRUE

Height ≥ 9 in ?dog

?

You can find more details in:
• Zaki, M., & Meira, W. (2014). Data mining 

and analysis : Fundamental concepts and 
algorithms. New York: Cambridge University 
Press.

• https://en.wikipedia.org/wiki/Decision_tree
_learning

https://en.wikipedia.org/wiki/Decision_tree_learning


Naïve Bayes
Classification Analysis

Bayes Theorem:

𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃 𝐵 𝐴

𝑃 𝐵

Thomas Bayes
1701-1761
Source: 
https://en.wikipedia.org/wiki/Thomas_B
ayes#/media/File:Thomas_Bayes.gif

Probability of A happening, 
given that B has occurred

The prior, the initial 
degree of belief in A.

The likelihood of event B
occurring given that A is 
true.

https://en.wikipedia.org/wiki/Thomas_Bayes#/media/File:Thomas_Bayes.gif


Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

Classify whether the day is suitable 
for playing golf, given the features 
of the day.

Bayes theorem can be rewritten as:

𝑃 𝑦 𝐱 =
𝑃 𝑦 𝑃 𝐱 𝑦

𝑃 𝐱

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)



Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 

𝑦 from the training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for 

all possible value of 𝑦 from the 
training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4: Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱
to the class label of 𝐱

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)



Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 𝑦 from the 

training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for all possible 

value of 𝑦 from the training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4:  Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱 to the class 
label of 𝐱

𝑃 Play golf = No =
5

14

𝑃 Play golf = Yes =
9

14



Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 𝑦 from the 

training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for all possible 

value of 𝑦 from the training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4:  Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱 to the class 
label of 𝐱

𝑃 Outlook = Sunny|Play golf = No =
2

5

𝑃 Outlook = Sunny|Play golf = Yes =
3

9



Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 𝑦 from the 

training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for all possible 

value of 𝑦 from the training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4:  Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱 to the class 
label of 𝐱

𝑃 Temperature = Hot|Play golf = No =
2

5

𝑃 Temperature = Hot|Play golf = Yes =
2

9



Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 𝑦 from the 

training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for all possible 

value of 𝑦 from the training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4:  Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱 to the class 
label of 𝐱

𝑃 Humidity = Normal|Play golf = No =
1

5

𝑃 Humidity = Normal|Play golf = Yes =
6

9



Naïve Bayes
Classification Analysis

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 𝑦 from the 

training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for all possible 

value of 𝑦 from the training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4:  Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱 to the class 
label of 𝐱

𝑃 Windy = True|Play golf = No =
3

5

𝑃 Windy = True|Play golf = Yes =
3

9



Naïve Bayes
Classification Analysis

We want to classify 
𝐱 = (Sunny, Hot, Normal, True)

How the Naïve Bayes works
STEP 1: Calculate 𝑃 𝑦 for all possible value of 𝑦 from the 

training dataset.

STEP 2: Calculate 𝑃 𝐱 𝑦 = ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦) for all possible 

value of 𝑦 from the training dataset.

STEP 3:  Calculate 𝑃 𝑦 𝐱 = 𝑃 𝑦 ς𝑖=1
𝑝

𝑃(𝑥𝑖|𝑦)

STEP 4:  Assign 𝑦 that reach the highest 𝑃 𝑦 𝐱 to the class 
label of 𝐱

𝑃 Windy = True|Play golf = No =
3

5

𝑃 Windy = True|Play golf = Yes =
3

9

𝑃 Play golf = No =
5

14

𝑃 Play golf = Yes =
9

14

𝑃 Outlook = Sunny|Play golf = No =
2

5

𝑃 Outlook = Sunny|Play golf = Yes =
3

9

𝑃 Temperature = Hot|Play golf = No =
2

5

𝑃 Temperature = Hot|Play golf = Yes =
2

9

𝑃 Humidity = Normal|Play golf = No =
1

5

𝑃 Humidity = Normal|Play golf = Yes =
6

9

𝑃 Play golf = No Sunny, Hot, Normal, True

=
5

14
×
2

5
×
2

5
×
1

5
×
3

5
= 0.0069

𝑃 Play golf = Yes Sunny, Hot, Normal, True

=
9

14
×
3

9
×
2

9
×
6

9
×
3

9
= 𝟎. 𝟎𝟏𝟎𝟔

So, it is suitable to play golf given the conditions 
(Outlook = Sunny, Temperature = Hot, Humidity = Normal 
and Windy = True).



Naïve Bayes
Classification Analysis

Quiz: 
It is suitable to play golf 
or not given the conditions 
(Outlook = Rainy, 
Temperature = Mild, 
Humidity = Normal 
and Windy = False).

D Outlook Temperature Humidity Windy Play golf

𝐱1 Rainy Hot High False No

𝐱2 Rainy Hot High True No

𝐱3 Overcast Hot High False Yes

𝐱4 Sunny Mild High False Yes

𝐱5 Sunny Cool Normal False Yes

𝐱6 Sunny Cool Normal True No

𝐱7 Overcast Cool Normal True Yes

𝐱8 Rainy Mild High False No

𝐱9 Rainy Cool Normal False Yes

𝐱10 Sunny Mild Normal False Yes

𝐱11 Rainy Mild Normal True Yes

𝐱12 Overcast Mild High Ture Yes

𝐱13 Overcast Hot Normal False Yes

𝐱14 Sunny Mild High True No



Classification Assessment
Classification Analysis

D 𝑋1 𝑋2 … 𝑋10

𝐱1

𝐱2

𝐱3

…

𝐱𝑙

𝐱𝑙+1

𝐱𝑙+2

…

𝐱𝑛

Training dataset

Test dataset

Actual values

𝑌

Train a predictive 
model

Predictive Model

෨𝑌

Predicted values

𝑌

Actual values

Compare

= 
? 



Classification Assessment
Classification Analysis

෨𝑌

P
re

d
ic

te
d

 v
al

u
es 𝑌

A
ct

u
al

 v
al

u
es

Compare

Positive Negative

Positive TP FP

Negative FN TN

Actual values

P
re

d
ic

te
d

 
va

lu
es

Confusion matrix

true positives (TP)
true negatives (TN)
false positives (FP)
false negatives (FN)

Accuracy =
TP + TN

Total

Misclassification Rate =
FP + FN

Total
= 1 − Accuracy

Recall =
TP

TP + FN

Precision =
TP

TP + FP

= 
? 



Classification Assessment
Classification Analysis

setosa versicolor virginica

setosa 10 2 4

versicolor 1 16 1

virginica 0 2 9

Actual values

P
re

d
ic

te
d

 v
al

u
es

Example

Accuracy =
10 + 16 + 9

45
=
35

45
= 0.78

Misclassification Rate = 1 − 0.78 = 0.22

Recallsetosa =
10

10 + 1 + 0
=
10

11
= 0.91

Precisionsetosa =
10

10 + 2 + 4
=
10

16
= 0.625

Recallversicolor =
16

2 + 16 + 2
=
16

20
= 0.8

Precisionversicolor =
16

1 + 16 + 1
=
16

18
= 0.89

Recallvirginica = ?

Precisionvirginica = ?



Classification Assessment
Classification Analysis

Cat Dog

Cat 5 2

Dog 3 3

Actual values

P
re

d
ic

te
d

 
va

lu
es

Example

Accuracy =
5 + 3

13
=

8

13
= 0.62

Misclassification Rate =
2 + 3

13
=

5

13
= 0.38

Recall =
5

5 + 3
=
5

8
= 0.625

Precision =
5

5 + 2
=
5

7
= 0.714



Regression Analysis

D 𝑋1 𝑋2 … 𝑋10

𝐱1

𝐱2

𝐱3

…

𝐱𝑙

𝐱𝑙+1

𝐱𝑙+2

…

𝐱𝑛

Dependent variable

𝑌

Independent variable

For regression analysis
• The value we want to predict is numeric data.
• Known as Dependent variable

Example
• We know quantities of water and fertilizer providing to a 

tree for a month
• We want to predict the growth  rate (height) of the tree.

Height?



Regression analysis

The task of regression is one of finding a 
line that most closely fits the data 
according to a specific mathematical 
criterion.

The line can be used for
• prediction and forecasting
• describing relationships between 

the independent and dependent 
variables.

Quantities of Water 

H
e

ig
h

t 
o

f 
Tr

e
e

Estimating the relationships 
between a dependent variable 
and one or more independent 
variables.



Regression analysis

Quantities of Water 

H
e

ig
h

t 
o

f 
Tr

e
e

𝑦 = 𝑓 x, β + 𝑒

Dependent variable

Independent variables

Unknown parameters

Error terms

Goal is to estimate the function.

𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑇𝑟𝑒𝑒 = 𝛽0 + 𝛽1 ∙ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟



Regression Analysis

Number of Independent Variable

Simple Regression
Concerns two-dimensional sample points:
• one independent variable 
• one dependent variable

Types of Regression Problems

= 1 > 1

Multiple Regression
Uses several independent variables to 
predict the outcome of a dependent 
variable. 



Linear Regression
Regression Analysis

𝑥

𝑦

𝑥1

𝑦

𝑥2

Simple Linear Regression Multiple Linear Regression

We aim to fit a line or hyperplane to a scattering of data.
As the line or hyperplane is described by the parameters β,  
finding the optimal values of β is our work.

𝑦 = 𝑓 x, β = 𝛽0 + 𝛽1𝑥
𝑦 = 𝑓 x, β = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2



Linear Regression
Regression Analysis

𝑥

𝑦

𝑦 = 𝛽0 + 𝛽1𝑥The value of parameters will be 
determined by fitting the line to 
training data.

Done by: minimize an error 

function. Error = 𝑦 − 𝑦



Linear Regression
Regression Analysis

𝑥

𝑦

𝑦 = 𝛽0 + 𝛽1𝑥Sum of squared errors

𝐸 β =

𝑖=1

𝑛

𝑦𝑖 − 𝑦𝑖
2

=

𝑖=1

𝑛

𝛽0 + 𝛽1𝑥𝑖 − 𝑦𝑖
2 Error = 𝑦 − 𝑦

So, we find the parameter 
β = [𝛽0, 𝛽1] that provide a 
small value for 𝐸 β .
This problem can be solved by 
optimization tools.



Linear Regression
Regression Analysis

Extend to multiple linear regression
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Polynomial Regression
Regression Analysis

Linear Regression Polynomial Regression

𝑥

𝑦

𝑦 = 𝛽0 + 𝛽1𝑥

𝑥

𝑦

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2

Relationship between the independent 
variable 𝑥 and the dependent variable 
𝑦 is modelled as an nth degree 
polynomial in 𝑥. (i.e. n=2)

Relationship between the independent 
variable 𝑥 and the dependent variable 
𝑦 is a linear model.



Polynomial Regression
Regression Analysis

𝑥

𝑦

The general form of polynomial regression model:

𝑦 = 𝛽0 +

𝑑=1

𝑀

𝛽𝑑𝑥
𝑑

The best values of parameter 𝛽 = 𝛽0, 𝛽1, … , 𝛽𝑀
can be determined by minimizing the sum of 
squared errors:
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Error = 𝑦 − 𝑦



Polynomial Regression
Regression Analysis

Plot of polynomials having various 
orders M, shown as red curves.

Source: Christopher M. Bishop (2006). 
Pattern Recognition and Machine Learning. 
New York: Springer-Verlag.

What happens when we go to 
a much higher order polynomial?

Over-fitting!



Regression Assessment
Regression Analysis
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Regression Assessment
Regression Analysis
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Mean Squared Error (MSE)
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Root Mean Squared Error (RMSE)
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Mean Absolute Error (MAE)
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MSE, RMSE and MAE ≥ 0
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P

…

A lower value and is better than a higher one.



Time Series Analysis

Time Series Data 

Time

PresentPast Future

Time Series Data
A series of data points indexed in time 

order.

Time series data can be found in signal processing, econometrics, mathematical finance, 
weather forecasting, control engineering, astronomy, communications 
engineering, etc.



Time Series Analysis

Characteristics of Time Series Data 

Stationary
Statistical properties do not change over time. 
• Mean
• Variance 
• Covariance

Mean increases with time. Variance of the series is 
a function of time.

The spread becomes closer 
as the time increases.

Stationary Series 

Non-stationary Series 

Source: https://medium.com/greyatom/time-series-b6ef79c27d31

https://medium.com/greyatom/time-series-b6ef79c27d31


Time Series Analysis

Characteristics of Time Series Data 

Seasonality
Periodic fluctuations - pattern that recurs or repeats over regular intervals.

Example of seasonality
Source: https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775

https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775


Time Series Analysis

Characteristics of Time Series Data 

Autocorrelation
• Internal correlation in a time series.
• The similarity between observations as a function of the time lag between them.

Example of an autocorrelation plot - we will find a very similar value at every 24 unit of time.
Source: https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775

https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775


Identifying the nature of the phenomenon 
represented by the sequence of 

observations

Predicting future values of 
the time series variable

Time Series Analysis

Time Series Analysis
Analysis techniques that deal with time series data.

Time

PresentPast Future

Time Series Data

Main Goals



Autoregressive Model
Time Series Analysis

The output variable depends linearly on:
• Its own previous values 
• A stochastic term (an imperfectly predictable term)

Time

x𝑡x𝑡−1x𝑡−2

x𝑡 = 𝑐 + 𝜑1x𝑡−1 + 𝜑2x𝑡−2 +⋯+𝜑𝑝 x𝑡−𝑝 + 𝜀𝑡

where 𝑐 is a constant
𝜑1, 𝜑2, … , 𝜑𝑝 are the autoregressive model parameters

𝜀𝑡 is write noise

Linear combination of p previous observations

stochastic term

Finding the optimal values of 𝛗𝟏, 𝛗𝟐, … ,𝛗𝐩

is the work for fitting the model.

There are many ways to estimate the parameters, such as 
• The ordinary least squares procedure 
• Method of moments (through Yule–Walker equations).



Autoregressive Model
Time Series Analysis

AR(p) model : x𝑡 = 𝑐 +

𝑖=1

𝑝

𝜑𝑖x𝑡−𝑖 + 𝜀𝑡

How can we determine the maximum lag p?

Decide based on:
• Autocorrelation function
• Partial autocorrelation function



Autoregressive Model
Time Series Analysis

Autocorrelation Function
• Autocorrelation refers to how correlated a time series is with its past values.
• It measures the linear relationship between lagged values of a time series.

𝐴𝐶𝐹 𝑘 =
σ𝑡=𝑘+1
𝑇 x𝑡 − തx x𝑡−𝑘 − തx

σ𝑡=1
𝑘 x𝑡 − തx 2

where 𝑇 is the length of the time series. 

ACF of quarterly percentage change in US consumption.
Source: https://otexts.com/fpp2/non-seasonal-arima.html

Always measured between +1 and -1. 
• +1 : a strong positive association
• -1 : a strong negative association 
• 0 : no association.

https://otexts.com/fpp2/non-seasonal-arima.html


Autoregressive Model
Time Series Analysis

Source: https://otexts.com/fpp2/non-seasonal-arima.html

So, our AR model becomes 𝒙𝒕 = 𝒄 + 𝝋𝟏𝒙𝒕−𝟏 +𝝋𝟐𝒙𝒕−𝟐 +𝝋𝟑𝒙𝒕−𝟑 + 𝜺𝒕 AR(3)

Quarterly percentage change in US consumption 
expenditure.

ACF of quarterly percentage change in US consumption

We notice that there are significant spike 
at a lag of 1, 2 and 3 and much lower 
spikes for the subsequent lags.

https://otexts.com/fpp2/non-seasonal-arima.html


Autoregressive Model
Time Series Analysis

Partial Autocorrelation Function
• It measures the relationship between x𝑡 and x𝑡−𝑘 after removing the effects 

of lags 1,2,3, … , 𝑘 − 1.

PACF of quarterly percentage change in US consumption.
Source: https://otexts.com/fpp2/non-seasonal-arima.html

Always measured between +1 and -1. 
• +1 : a strong positive association
• -1 : a strong negative association 
• 0 : no association.

https://otexts.com/fpp2/non-seasonal-arima.html


Autoregressive Model
Time Series Analysis

Source: https://otexts.com/fpp2/non-seasonal-arima.html

So, our AR model becomes 𝒙𝒕 = 𝒄 + 𝝋𝟏𝒙𝒕−𝟏 +𝝋𝟐𝒙𝒕−𝟐 +𝝋𝟑𝒙𝒕−𝟑 + 𝜺𝒕 AR(3)

Quarterly percentage change in US consumption 
expenditure.

PACF of quarterly percentage change in US consumption

We notice that there are significant spike 
at a lag of 1, 2 and 3 and much lower 
spikes for the subsequent lags.

https://otexts.com/fpp2/non-seasonal-arima.html


Autoregressive Model
Time Series Analysis

Source: https://online.stat.psu.edu/stat501/lesson/14/14.1

Quiz: 
What is an appropriate AR 
model of quake?

The annual number of worldwide earthquakes 
with magnitude greater than 7 on the Richter 
scale for n = 100 years

https://online.stat.psu.edu/stat501/lesson/14/14.1


Moving Average Model 
Time Series Analysis

The output variable depends linearly on:
• Past forecast errors 
• A stochastic term (an imperfectly predictable term)

Time

x𝑡x𝑡−1x𝑡−2

x𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+𝜃𝑝 𝜀𝑡−𝑞

where 𝜇 is the mean of the series
𝜃1, 𝜃2, … , 𝜃𝑞 are the moving average model parameters

𝜀𝑡 is white noise

Linear combination of q previous forecast errors 

Finding the optimal values of 𝛉𝟏, 𝛉𝟐, … , 𝛉𝒒
is the work for fitting the model.

• Fitting the MA estimates is more complicated than it is in 
autoregressive models, because the lagged error terms are not 
observable. 

• Iterative non-linear fitting procedures need to be used.



Moving Average Model
Time Series Analysis

MA(q) model : x𝑡 = 𝜇 +

𝑖=1

𝑞

𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡

How can we determine the maximum lag q?

Decide based on:
• Autocorrelation function
• Partial autocorrelation function



Moving Average Model
Time Series Analysis

Source: https://online.stat.psu.edu/stat501/lesson/14/14.1

Quiz: 
What is an appropriate MA 
model of quake?

The annual number of worldwide earthquakes 
with magnitude greater than 7 on the Richter 
scale for n = 100 years

https://online.stat.psu.edu/stat501/lesson/14/14.1


Autoregressive Integrated Moving Average (ARIMA) 
Time Series Analysis

Combination of autoregressive and moving average models.

• Autoregression - AR(p):  x𝑡 = 𝑐 + σ𝑖=1
𝑝

𝜑𝑖x𝑡−𝑖 + 𝜀𝑡
• Moving Average - MA(q): x𝑡 = 𝜇 + σ𝑖=1

𝑞
𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡

• Integration - the reverse of differencing (transform non-stationarity to stationarity )

Time

x𝑡x𝑡−1x𝑡−2

x𝑡
′ = 𝑐 + 𝜑1x𝑡−1

′ +⋯+𝜑𝑝 x𝑡−𝑝
′ + 𝜃1𝜀𝑡−1 +⋯+𝜃𝑝 𝜀𝑡−𝑞 + 𝜀𝑡

MA(q)AR(p)

where x𝑡
′ is the differenced series. It may have been differenced 

more than once (take d times of the first difference until the time 
series is not stationary)

Finding the optimal values of𝛗𝟏, 𝛗𝟐, … ,𝛗𝐩 and 

𝛉𝟏, 𝛉𝟐, … , 𝛉𝒒is the work for fitting the model.



Autoregressive Integrated Moving Average (ARIMA) 
Time Series Analysis

x𝑡
′ = 𝑐 + 𝜑1x𝑡−1

′ +⋯+𝜑𝑝 x𝑡−𝑝
′ + 𝜃1𝜀𝑡−1 +⋯+𝜃𝑝 𝜀𝑡−𝑞 + 𝜀𝑡

MA(q)AR(p)

where x𝑡
′ is the differenced series. It may have been differenced 

more than once (take d times of the first difference until the time 
series is not stationary)

ARIMA(p,d,q)
p, d and q are hyper-parameters 

that we need to determine.



Autoregressive Integrated Moving Average (ARIMA) 
Time Series Analysis

Perform ARIMA

Step 1
Check stationarity

Step 2
Difference

Step 3
Filter out a validation sample

Step 4
Select AR and MA terms

Step 5
Build the model

Step 6
Validate model

If a time series has a trend or seasonality component, it must 
be made stationary before we can use ARIMA to forecast.

If the time series is not stationary, it needs to be stationarized
through differencing.

This will be used to validate how accurate our model is. Use 
train test validation split to achieve this

Use the ACF and PACF to decide whether to include an AR 
term(s), MA term(s), or both.

Build the model and set the number of periods to forecast to 
N (depends on your needs).

Compare the predicted values to the actuals in the validation 
sample.

Parameter d is 
determined here.



Autoregressive Integrated Moving Average (ARIMA) 
Time Series Analysis

Determine suitable values of p and q using either AIC, AICc or BIC value.

Akaike information criterion (AIC) 

AIC = −2 log 𝐿 + 2 𝑝 + 𝑞 + 𝑘 + 1

where 𝐿 is the likelihood of the data,
𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 = 0 if 𝑐 = 0.  

Corrected AIC (AICc)

AICc = AIC +
2 𝑝 + 𝑞 + 𝑘 + 1 𝑝 + 𝑞 + 𝑘 + 2

𝑇 − 𝑝 − 𝑞 − 𝑘 − 2

Bayesian Information Criterion (BIC)

BIC = AIC + [log 𝑇 − 2] 𝑝 + 𝑞 + 𝑘 + 1

Good models are obtained by 
minimizing the AIC, AICc or BIC.



Autoregressive Integrated Moving Average (ARIMA) 
Time Series Analysis

Determine suitable values of p and q using either AIC, AICc or BIC value.



Moving Average Smoothing
Time Series Analysis

Time

• Smooth out short-term fluctuations 
• Highlight longer-term trends or cycles.

Time Series Data

Trend Line

Purpose: to help improve 
understanding of the time series



Moving Average Smoothing
Time Series Analysis

Simple Moving Average

Financial Applications: the unweighted 
mean of the previous n data.

𝑇𝑡 =
1

𝑚


𝑖=0

𝑚−1

𝑥𝑡−𝑖

Time

𝑇𝑡

𝑚 time steps

𝑥𝑡

𝑥𝑡−𝑚−1



Moving Average Smoothing
Time Series Analysis

Simple Moving Average

Science and Engineering: the mean is 
taken from an equal number of data on 
either side of a central value.

𝑇𝑡 =
1

𝑚


𝑖=−𝑘

𝑘

𝑥𝑡+𝑘

where 𝑚 = 2𝑘 + 1

Time

𝑇𝑡

𝑚 time steps

𝑥𝑡

𝑥𝑡−𝑘

𝑥𝑡+𝑘



Moving Average Smoothing
Time Series Analysis

Simple Moving Average

Example: Different moving averages applied to the residential electricity sales data.
Source: https://otexts.com/fpp2/moving-averages.html

https://otexts.com/fpp2/moving-averages.html


Further Study
• Book: 

• Zaki, M., & Meira, W. (2014). Data mining and analysis : Fundamental concepts and 
algorithms. New York: Cambridge University Press.

• Christopher M. Bishop (2006). Pattern Recognition and Machine Learning. New York: 
Springer-Verlag.

• Jeremy Watt, Reza Borhani & Aggelos K. Katsaggelos (2016). Machine Learning 
Refined: Foundations, Algorithm, and Application. New York: Cambridge University 
Press.

• Website
• https://medium.com/swlh/an-introduction-to-time-series-analysis-ef1a9200717a
• https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-

forecasting-70d476bfe775
• https://en.wikipedia.org/wiki/Autoregressive_model
• https://otexts.com/fpp2/
• https://online.stat.psu.edu/stat510/lesson/5/5.2

https://medium.com/swlh/an-introduction-to-time-series-analysis-ef1a9200717a
https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
https://en.wikipedia.org/wiki/Autoregressive_model
https://otexts.com/fpp2/
https://online.stat.psu.edu/stat510/lesson/5/5.2

