Introduction to Data Science

Chapter 3
 Descriptive Analysis

Papangkorn Inkeaw, PhD

Department of Computer Science, Faculty of Science

Outline

Descriptive Analysis

1. Descriptive Statistics with Pivot Tables

- Mean, Median and Mode
- Variance and Standard Deviation
- Skewness and Kurtosis
- Covariance Matrix

2. Cluster Analysis

- Distances
- K-means Clustering
- Hierarchical Clustering
- Density-based Spatial Clustering

3. Association Analysis

- Itemset Mining
- Association Rules

Descriptive Statistics with Pivot Tables

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

	X_{1}	X_{2}	\ldots	X_{10}
\mathbf{x}_{1}				
\ldots				
\mathbf{x}_{n}				

[^0]

A distribution in statistics is a function that shows:

- the possible values for a variable (x-axis)
- how often they occur (yaxis).

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

Mean

- A measure of a central or typical value for a probability distribution.
- The sum of all measurements divided by the number of observations in the data set.

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12
Mean of job performance:

$$
\bar{x}=\frac{7+10+11+15+10+10+12+14+16+12}{10}=\frac{117}{10}=11.7
$$

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

Median

- Reflect the central tendency of the sample in such a way that it is uninfluenced by extreme values or outliners.
- The middle value that separates the higher half from the lower half of the data set.
- To compute the middle value, we need to arrange all the numbers from smallest to greatest.
- Then,

$$
\tilde{x}=\left\{\begin{array}{cl}
x_{\frac{(n+1)}{2},} & \text { if } n \text { is odd }, \\
\frac{\left(x_{\left(\frac{n}{2}\right)}+x^{\left(\frac{n}{2}+1\right)}\right)}{2}, & \text { if } n \text { is even },
\end{array}\right.
$$

Example:

Job performance: $7,10,11,15,10,10,12,14,16,12$
Median of job performance:

$$
\begin{aligned}
& \mathrm{n}=10 . \text { So, } \mathrm{n} \text { is even } \\
& \tilde{x}=\frac{x_{5}+x_{6}}{2}=\frac{11+12}{2}=11.5
\end{aligned}
$$

7	10	10	10	11	12	12	14	15
16								

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

Mode

- The most frequent value in the data set.

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12
Mode of job performance:

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

Geometric visualization of the mode, median and mean of an arbitrary probability density function

Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

Recall:

Provides	Categorical Attribute		Numerical Attribute	
	Nominal	Ordinal	Interval-scaled	Ratio-scaled
Mode	$/$	$/$	$/$	$/$
Median		$/$	$/$	$/$
Mean			$/$	$/$

Mean, Median and Mode

Descriptive Statistics with Pivot Tables

Variance and Standard Deviation

Descriptive Statistics with Pivot Tables

Standard Deviation (SD, s)

- A measure that is used to quantify the amount of variation or dispersion of a set of data values.
- A low standard deviation indicates that the data points tend to be close to the mean.
- A high standard deviation indicates that the data points are spread out over a wider range of values.

Source:
https://en.wikipedia.org/wiki/Standard deviation\#/ media/File:Comparison standard deviations.svg

Variance and Standard Deviation

Descriptive Statistics with Pivot Tables

Standard Deviation (SD, s)

The formula for the sample standard deviation is

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Variance and Standard Deviation

Descriptive Statistics with Pivot Tables

Variance (σ)

- How far a set of numbers are spread out from their average value.
- It is the square of the standard deviation

$$
\operatorname{var}(X)=s^{2}={\left.\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)}^{2}
$$

Source:
https://en.wikipedia.org/wiki/Standard deviation\#/media/
File:Standard deviation diagram.svg

Variance and Standard Deviation

Descriptive Statistics with Pivot Tables

Example

- Job performance; $X=\{7,10,11,15,10,10,12,14,16,12\}$
- Mean of job performance $\bar{X}: 11.7$
- Standard Deviation; $s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=2.71$
- Variance; $\operatorname{var}(X)=S D^{2}=2.71^{2}=7.34$

Job performance x_{i}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$
7	-4.7	22.09
10	-1.7	2.89
11	-0.7	0.49
15	3.3	10.89
10	-1.7	2.89
10	-1.7	2.89
12	0.3	0.09
14	2.3	5.29
16	4.3	18.49
12	0.3	0.09
$\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{}$	66.1	
$1{ }^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	2.71	
$\sqrt{n-1}$		

Variance and Standard Deviation

Descriptive Statistics with Pivot Tables

	$\begin{aligned} & \text { IQ } \\ & X_{1} \end{aligned}$	Job performance X_{2}
\mathbf{x}_{1}	99	7
\mathbf{x}_{2}	105	10
\mathbf{x}_{3}	105	11
x_{4}	106	15
x_{5}	108	10
x_{6}	112	10
\mathbf{x}_{7}	113	12
x_{8}	115	14
X_{9}	118	16
\mathbf{x}_{10}	134	12
Mean	111.5	11.7
SD		2.71
Variance		7.34

$\operatorname{var}(X)=s^{2}={\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}^{2}$

Quiz:

Find the SD and variance of IQ.

Skewness and Kurtosis

Descriptive Statistics with Pivot Tables

Skewness

- Skewness is usually described as a measure of a dataset's symmetry - or lack of symmetry.
- The normal distribution has a skewness of 0 .

Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa

Skewness and Kurtosis

Descriptive Statistics with Pivot Tables

Kurtosis

- Measures the tail-heaviness of the distribution.
- The excess kurtosis for a standard normal distribution is 0 .

[^1]
Covariance Matrix

Descriptive Statistics with Pivot Tables

We can slice any variables/features and display them as a scatter plot

The joint variability of two random variables can be described by covariance

Covariance Matrix

Descriptive Statistics with Pivot Tables

Covariance

- How much two random variables vary together.
- The covariance of random variables X and Y, denoted by $\operatorname{cov}(X, Y)$ can be computed by:

$$
\operatorname{cov}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- The value of covariance lies between $-\infty$ and $+\infty$.

Covariance Matrix

Descriptive Statistics with Pivot Tables

Example

	IQ	Job performance	$\left(x_{i}-\bar{x}\right)$	$\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
	X	Y			
\mathbf{x}_{1}	99	7	-12.5	-4.7	58.75
\mathbf{x}_{2}	105	10	-6.5	-1.7	11.05
\mathbf{x}_{3}	105	11	-6.5	-0.7	4.55
\mathbf{x}_{4}	106	15	-5.5	3.3	-18.15
\mathbf{x}_{5}	108	10	-3.5	-1.7	5.95
\mathbf{x}_{6}	112	10	0.5	-1.7	-0.85
\mathbf{x}_{7}	113	12	1.5	0.3	0.45
\mathbf{x}_{8}	115	14	3.5	2.3	8.05
\mathbf{x}_{9}	118	16	6.5	4.3	27.95
\mathbf{x}_{10}	134	12	22.5	0.3	6.75
Mean	111.5	11.7		SUM	104.5

Covariance Matrix

Descriptive Statistics with Pivot Tables

Covariance

Acadgild

A positive covariance means both variables tend to move upward or downward in value at the same time.

A negative covariance means the variables will move away from each other.

A zero covariance means there is no relationship.

Source:
https://acadgild.com/
blog/covariance-and-
correlation

Covariance Matrix

Descriptive Statistics with Pivot Tables

Correlation

- Unit measure of change between two variables change with respect to each other.
- A normalized form of covariance.

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{s_{X} s_{Y}}
$$

- The value of correlation lies between -1 and +1 .
- If the correlation coefficient is one, it means that if one variable moves a given amount, the second moves proportionally in the same direction.
- If correlation coefficient is zero, no relationship exists between the variables.
- If correlation coefficient is -1 , it means that one variable increases, the other variable decreases proportionally.

Covariance Matrix

Descriptive Statistics with Pivot Tables

The value of covariance lies between -1 and +1 .

- If the correlation coefficient is one, it means that if one variable moves a given amount, the second moves proportionally in the same direction.
- If correlation coefficient is zero, no relationship exists between the variables.
- If correlation coefficient is -1 , it means that one variable increases, the other variable decreases proportionally.

Covariance Matrix

Descriptive Statistics with Pivot Tables

Example

	IQ	Job performance
	X	Y
\mathbf{x}_{1}	99	7
\mathbf{x}_{2}	105	10
\mathbf{x}_{3}	105	11
\mathbf{x}_{4}	106	15
\mathbf{x}_{5}	108	10
\mathbf{x}_{6}	112	10
\mathbf{x}_{7}	113	12
\mathbf{x}_{8}	115	14
\mathbf{x}_{9}	118	16
\mathbf{x}_{10}	134	12
Mean	111.5	11.7
SD	9.70	2.71

$$
\operatorname{cov}(X, Y)=11.61
$$

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{s_{X} s_{Y}}=\frac{11.61}{9.70 \times 2.71}=\frac{11.61}{26.287}=0.44
$$

Covariance Matrix

Descriptive Statistics with Pivot Tables

Example

	IQ	Job performance
	X	Y
\mathbf{x}_{1}	99	7
\mathbf{x}_{2}	105	10
\mathbf{x}_{3}	105	11
\mathbf{x}_{4}	106	15
\mathbf{x}_{5}	108	10
\mathbf{x}_{6}	112	10
\mathbf{x}_{7}	113	12
\mathbf{x}_{8}	115	14
\mathbf{x}_{9}	118	16
\mathbf{x}_{10}	134	12
Mean	111.5	11.7
SD	9.70	2.71

Quiz:
What do the covariance and correlation tell about the relation between IQ and job performance?

Covariance Matrix

Descriptive Statistics with Pivot Tables

Covariance Matrix

- A matrix whose element in the i, j position is the covariance between the i-th and j-th features.

	X_{1}	X_{2}	\ldots	X_{10}
\mathbf{x}_{1}				
\ldots				
\mathbf{x}_{n}				

Data Matrix

$$
C=\begin{gathered}
X_{1} \\
X_{1} \\
X_{2} \\
X_{2} \\
X_{10}
\end{gathered}\left[\begin{array}{cccc}
\operatorname{cov}\left(X_{1}, X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) & \cdots & X_{10} \\
\operatorname{cov}\left(X_{1}, X_{10}\right) \\
\operatorname{cov}\left(X_{2}, X_{1}\right) & \operatorname{cov}\left(X_{2}, X_{2}\right) & \cdots & \operatorname{cov}\left(X_{2}, X_{10}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(X_{10}, X_{1}\right) & \operatorname{cov}\left(X_{10}, X_{2}\right) & \cdots & \operatorname{cov}\left(X_{10}, X_{10}\right)
\end{array}\right]
$$

Covariance Matrix

Cluster Analysis

Cluster Analysis

Finding groups of datapoints such that:

- The datapoints in the same group will be like one another.
- The datapoints in a group are different from the datapoints in other groups.
- The group of similar data points is called a Cluster.

Distances and Similarity

Cluster Analysis

Euclidean distance

$$
d_{e u c}(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{i=1}^{p}\left(x_{i}-y_{i}\right)^{2}}
$$

Manhattan distance
$d_{\text {manh }}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{p}\left|x_{i}-y_{i}\right|$

Hamming distance

$$
d_{\text {hamm }}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{p}\left(x_{i} \neq y_{i}\right)
$$

The number of mismatched values

Commonly used to measure distance between two numerical datapoints.

Distances and Similarity

Cluster Analysis

Cosine similarity

$$
s_{\cos }(\mathbf{x}, \mathbf{y})=\frac{\sum_{i=1}^{p} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{p} x_{i}^{2}} \sqrt{\sum_{i=1}^{y} y_{i}^{2}}}
$$

Commonly used for numerical datapoints.

Jaccard coefficient

$$
s_{j a c c}(\mathbf{x}, \mathbf{y})=\frac{\sum_{i=1}^{p} \min \left(x_{i}, y_{i}\right)}{\sum_{i=1}^{p} \max \left(x_{i}, y_{i}\right)}
$$

Distances and Similarity

Cluster Analysis

K-means Clustering

Cluster Analysis

K-means

Every data point is allocated to each of the clusters through reducing the sum of squared error.

K-means Clustering

Cluster Analysis

How the k-means works

STEP 1: Identifies k number of centroids
(k is a parameter of the k-means)
STEP 2: Randomly initialize k centroids
STEP 3: Allocates every data point to the nearest cluster STEP 4: Update each centroid (mean)
STEP 5: Go to STEP 3 until centroids have stabilized

Source:
https://commons.wikimedia.org/wiki/File:Kmeans convergence.gif

Hierarchical Clustering

Cluster Analysis

Agglomerative Hierarchical clustering

Iteratively merge the two closest clusters until only a single cluster remains.

Hierarchical Clustering

Cluster Analysis

How the agglomerative hierarchical clustering works

STEP 1: Compute the proximity matrix (distance or similarity matrix)
STEP 2: Let each data point be a cluster
STEP 3: Merge the two closest clusters
STEP 4: Update the proximity matrix
STEP 5: Go to STEP 3 until only a single cluster remains

Source:
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Hierarchical Clustering

Cluster Analysis

Agglomerative hierarchical clustering

STEP 1: Compute the proximity matrix
STEP 2: Let each data point be a cluster
STEP 3: Merge the two closest clusters
STEP 4: Update the proximity matrix
STEP 5: Go to STEP 3 until only a single cluster remains

Linkage Criteria: Distance between sets of observations

1. Minimum of the distance between points x_{i} and x_{j} such that x_{i} belongs to C1 and x_{j} belongs to C2
2. Maximum of the distance between points x_{i} and x_{j} such that x_{i} belongs to C 1 and x_{j} belongs to C2
3. Average distance of all-pair data points
4. Distance Between Centroids
5. and etc.

As we merge datapoints to form a cluster (set of datapoints)

How can we measure the distance/similarity

 between two sets?

Minimum (single-linkage clustering): 0.5
Maximum (complete-linkage clustering): 0.95
Average linkage clustering: 0.77

Density-based Spatial Clustering

Cluster Analysis

Use the local density of points to determine the clusters.

- Groups together points that are closely packed together (point in high-density regions).
- Marking points that lie alone in low-density regions as outliers.

Density-based Spatial Clustering

Cluster Analysis

How do we measure density of a region?

- Density at a point - Number of points within a circle of Radius Eps (ϵ) from point \mathbf{p}.

$$
\epsilon \text {-neighborhood: } N_{\epsilon}(\mathbf{p})=\{\mathbf{q} \in \mathbf{D} \mid d(\mathbf{p}, \mathbf{q}) \leq \epsilon\}
$$

- Dense Region - For each point in the cluster, the circle with radius ϵ contains at least minimum number of points (MinPts).

Density-based Spatial Clustering

Cluster Analysis

How do we measure density of a region?

- Density at a point - Number of points within a circle of Radius Eps (ϵ) from point \mathbf{p}.

$$
\epsilon \text {-neighborhood: } N_{\epsilon}(\mathbf{p})=\{\mathbf{q} \in \mathbf{D} \mid d(\mathbf{p}, \mathbf{q}) \leq \epsilon\}
$$

- Dense Region - For each point in the cluster, the circle with radius ϵ contains at least minimum number of points (MinPts).

A point p can be classified as:

- Core point - if $\left|N_{\epsilon}(\mathbf{p})\right| \geq$ MinPts
- Border point - if $\left|N_{\epsilon}(\mathbf{p})\right|<$ MinPts and p belong to ϵ-neighborhood of some core point
- Noise point - if \mathbf{p} is neither a core nor a border point

Density-based Spatial Clustering

Cluster Analysis

How the DBSCAN works

STEP 1: Find ϵ-neighborhood of every point, and identify the core points
STEP 2: Find the connected components of core points on the neighbor graph, ignoring all non-core points.
STEP 3: Assign each non-core point to a nearby cluster if the cluster is an ϵ - neighbor, otherwise assign it to noise.

$$
\text { MinPts }=4
$$

- core points

Connected Components -
There exists an edge between two core points

Association Analysis

Association Analysis

Uncover associations between items (attributes)
Frequent Item Sets: (Milk, Bread),

- How likely are two sets of items to co-occur.
- How likely are two sets of items to conditionally occur.

A prototypical application of association analysis is Market Basket Analysis
(Banana, Apple)
Association Rules: (Bread \rightarrow Milk)

Market baskets

Frequent Item Sets

Association Analysis

Items

All possible things that can be put into the basket

Example:

Items $I=\{$ Banana,Milk,Apple,Bread $\}$

Item Set

- A possible combinations of elements in the baskets
- Possible things that can be bought together

Items				
	Banana	Milk	Apple	Bread
\mathbf{x}_{1}	0	1	1	0
\mathbf{x}_{2}	1	1	0	0
\mathbf{x}_{3}	0	1	0	1
\ldots				
\mathbf{x}_{n}	1	0	1	0

Market baskets

For example: 15 possible item sets
\{Banana\}, \{Milk\}, \{Apple\}, \{Bread\}
\{Banana, Milk\}, \{Banana, Apple\}, \{Banana, Bread\}, \{Milk, Apple\}, \{Milk, Bread\}, \{Apple, Bread\}
\{Banana, Milk, Apple\}, \{Banana, Milk, Bread\}, \{Banana, Apple, Bread\}, \{Milk, Apple, Bread\}
\{Banana, Milk, Apple, Bread\}

Frequent Item Sets

Association Analysis

Support

The number of transections in the dataset \mathbf{D} that contain an item set X, denoted $\sup (X, \mathbf{D})$

Example

$$
\begin{gathered}
\sup (\{\text { Milk }\}, \mathbf{D})=7 \\
\sup (\{\text { Banana, Apple }\}, \mathbf{D})=2 \\
\sup (\{\text { Milk, Apple, Bread }\}, \mathbf{D})=2
\end{gathered}
$$

\mathbf{D}	Banana	Milk	Apple	Bread
\mathbf{x}_{1}	0	1	1	0
\mathbf{x}_{2}	1	1	0	0
\mathbf{x}_{3}	0	1	0	1
\mathbf{x}_{4}	1	0	1	0
\mathbf{x}_{5}	0	1	1	1
\mathbf{x}_{6}	1	1	0	1
\mathbf{x}_{7}	0	1	1	1
\mathbf{x}_{8}	0	0	1	0
\mathbf{x}_{9}	0	1	0	1
\mathbf{x}_{10}	1	0	1	1

Market baskets

Frequent Item Sets

Association Analysis

An item set X is said to be frequent in D if $\sup (X, \mathrm{D}) \geq$ minsup

where minsup is a user defined minimum support threshold

sup	Item Set
7	$\{$ Milk $\}$
6	$\{$ Apple $\},\{$ Bread $\}$
5	$\{$ Milk, Bread $\}$
4	$\{$ Banana $\}$
3	$\{$ Milk, Apple $\},\{$ Apple, Bread $\}$
2	$\{$ Banana, Milk $\},\{$ Banana, Apple $\},\{$ Banana, Bread $\}$
	milk,Apple,Bread $\}$
1	\{Banana, Milk, Bread $\},\{$ Banana, Apple, Bread $\}$

	Items			
	Banana	Milk	Apple	Bread
\mathbf{x}_{1}	0	1	1	0
\mathbf{x}_{2}	1	1	0	0
\mathbf{x}_{3}	0	1	0	1
\mathbf{x}_{4}	1	0	1	0
\mathbf{x}_{5}	0	1	1	1
\mathbf{x}_{6}	1	1	0	1
\mathbf{x}_{7}	0	1	1	1
\mathbf{x}_{8}	0	0	1	0
\mathbf{x}_{9}	0	1	0	1
\mathbf{x}_{10}	1	0	1	1

Market baskets

Association Rules

Association Analysis

Association Rule

- An expression $X \rightarrow Y$ where X and Y are item sets and they are disjoint.
- The customer has purchased items in the set X then he is likely to purchase items in the set Y.

Example

$$
\{\text { Milk }\} \rightarrow\{\text { Bread }\}
$$

The customer has purchased milk then he is likely to purchase bread.

Please note that association rules are not

```
commutative, i.e. {Milk} }->{\mathrm{ Bread} does not
equal {Bread} }->\mathrm{ {Milk}.
```


Association Rules

Association Analysis

Support of Association Rule

- The number of transaction in which both X and Y co-occur as subsets, where X and Y are item sets

$$
\sup (X \rightarrow Y)=\sup (X \cup Y)
$$

Example

$$
\begin{aligned}
\sup (\{\text { Milk }\} \rightarrow\{\text { Bread }\}) & =\sup (\{\text { Milk, Bread }\}) \\
& =5
\end{aligned}
$$

						Items			
	Banana	Milk	Apple	Bread					
\mathbf{x}_{1}	0	1	1	0					
\mathbf{x}_{2}	1	1	0	0					
\mathbf{x}_{3}	0	1	0	1					
\mathbf{x}_{4}	1	0	1	0					
\mathbf{x}_{5}	0	1	1	1					
\mathbf{x}_{6}	1	1	0	1					
\mathbf{x}_{7}	0	1	1	1					
\mathbf{x}_{8}	0	0	1	0					
\mathbf{x}_{9}	0	1	0	1					
\mathbf{x}_{10}	1	0	1	1					

Market baskets

Association Rules

Association Analysis

Confident of Association Rule

- Measures how much the consequent (item) is dependent on the antecedent (item)
- The conditional probability that a transaction contains Y given that it contains X

$$
\operatorname{conf}(X \rightarrow Y)=\frac{\sup (X \cup Y)}{\sup (X)}
$$

Example

$$
\begin{aligned}
\operatorname{conf}(\{\text { Milk }\} \rightarrow\{\text { Bread }\}) & =\frac{\sup (\{\text { Milk, Bread }\})}{\sup (\{\text { Milk }\})} \\
& =\frac{5}{7}=0.71
\end{aligned}
$$

	Banana	Milk	Apple	Bread
\mathbf{x}_{1}	0	1	1	0
\mathbf{x}_{2}	1	1	0	0
\mathbf{x}_{3}	0	1	0	1
\mathbf{x}_{4}	1	0	1	0
\mathbf{x}_{5}	0	1	1	1
\mathbf{x}_{6}	1	1	0	1
\mathbf{x}_{7}	0	1	1	1
\mathbf{x}_{8}	0	0	1	0
\mathbf{x}_{9}	0	1	0	1
\mathbf{x}_{10}	1	0	1	1

Market baskets

Association Rules

Association Analysis

$$
\begin{aligned}
& \text { A rule } X \rightarrow Y \text { is said to be frequent if } \\
& \qquad \sup (X \rightarrow Y) \geq \text { minsup }
\end{aligned}
$$

A rule $X \rightarrow Y$ is said to be strong if $\operatorname{conf}(X \rightarrow Y) \geq$ minconf

where minsup is a user defined minimum support threshold minconf is a user-specified minimum confidence threshold

Example

Given $\boldsymbol{m i n s u p}=3$ and minconf $=0.5$
The rule $\{$ Milk $\} \rightarrow\{$ Bread $\}$ is

- Frequent because $\sup (\{$ Milk, Bread $\})=5 \geq 3$
- Strong because $\operatorname{conf}(\{$ Milk $\} \rightarrow\{$ Bread $\})=0.75 \geq 0.5$

	Banana	Milk	Apple	Bread
\mathbf{x}_{1}	0	1	1	0
\mathbf{x}_{2}	1	1	0	0
\mathbf{x}_{3}	0	1	0	1
\mathbf{x}_{4}	1	0	1	0
\mathbf{x}_{5}	0	1	1	1
\mathbf{x}_{6}	1	1	0	1
\mathbf{x}_{7}	0	1	1	1
\mathbf{x}_{8}	0	0	1	0
\mathbf{x}_{9}	0	1	0	1
\mathbf{x}_{10}	1	0	1	1

Market baskets

Association Rules

Association Analysis

Lift

- Called improvement or impact
- Measure the difference - measured in ratio - between the confidence of a rule and the expected confidence.
- Lift of a rule $X \rightarrow Y$ is defined as

$$
\operatorname{Lift}(X \rightarrow Y)=\frac{\operatorname{conf}(X \rightarrow Y)}{\sup (Y)}
$$

- Lift $(X \rightarrow Y)=1$ means that there is no correlation within the itemset.
- $\operatorname{Lift}(X \rightarrow Y)>1$ means that products in the itemset, \mathbf{X}, and \mathbf{Y}, are more likely to be bought together.
- Lift $(X \rightarrow Y)<1$ means that products in itemset, \mathbf{X}, and \mathbf{Y}, are unlikely to be bought together.

Example

$$
\begin{aligned}
\operatorname{Lift}(\{\text { Milk }\} \rightarrow\{\text { Bread }\})= & \frac{\operatorname{conf}(\{\text { Milk }\} \rightarrow\{\text { Bread }\})}{\sup (\{\text { Bread }\})} \\
& =\frac{0.71}{6}=0.12
\end{aligned}
$$

						Items			
	Banana	Milk	Apple	Bread					
\mathbf{x}_{1}	0	1	1	0					
\mathbf{x}_{2}	1	1	0	0					
\mathbf{x}_{3}	0	1	0	1					
\mathbf{x}_{4}	1	0	1	0					
\mathbf{x}_{5}	0	1	1	1					
\mathbf{x}_{6}	1	1	0	1					
\mathbf{x}_{7}	0	1	1	1					
\mathbf{x}_{8}	0	0	1	0					
\mathbf{x}_{9}	0	1	0	1					
\mathbf{x}_{10}	1	0	1	1					

Market baskets

Further Study

- Book:
- Zaki, M., \& Meira, W. (2014). Data mining and analysis : Fundamental concepts and algorithms. New York: Cambridge University Press.
- Website:
- https://towardsdatascience.com/understanding-the-concept-of-hierarchical-clustering-technique-c6e8243758ec
- https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
- https://towardsdatascience.com/dbscan-algorithm-complete-guide-and-application-with-python-scikit-learn-d690cbae4c5d
- https://towardsdatascience.com/market-basket-analysis-multiple-support-frequent-item-set-mining-584a311cae66
- https://towardsdatascience.com/market-basket-analysis-978ac064d8c6

[^0]: We can slice a feature/variable and ${ }^{50}$ describe it as a data distribution.

[^1]: Source: https://www.statext.com/android/kurtosis.html

