Introduction to Data Science

Last Update: 27 July 2021

Chapter 4 Predictive Analysis

Papangkorn Inkeaw, PhD

Outline

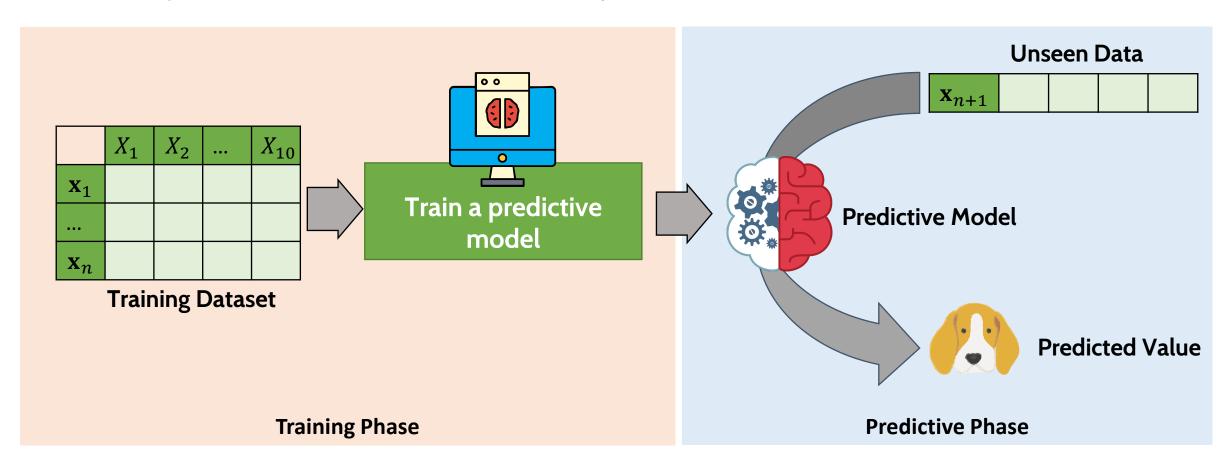
Predictive Analysis

- 1. Predictive Analysis
 - Preparing Datasets
- 2. Classification Analysis
 - K-Nearest Neighbor
 - Decision Tree
 - Naïve Bayes
 - Artificial Neural Network
 - Classification Assessment

- 3. Regression Analysis
 - Linear Regression
 - Polynomial Regression
 - Artificial Neural Network
 - Regression Assessment
- 4. Time Series Analysis
 - Autoregressive Model
 - Moving Average Model
 - Autoregressive Integrated Moving Average
 - Moving Average Smoothing

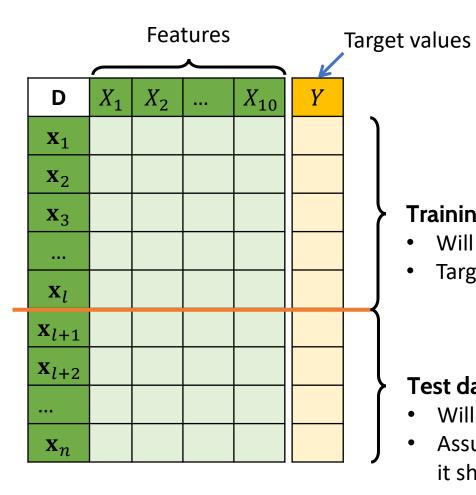
Predictive Analysis

Analyze current and historical data to make predictions about future or otherwise unknown events.



Preparing Dataset

Predictive Analysis



To perform a predictive analysis:

- We should have two dataset: training and test datasets.
- The target value of each datapoint must be available.

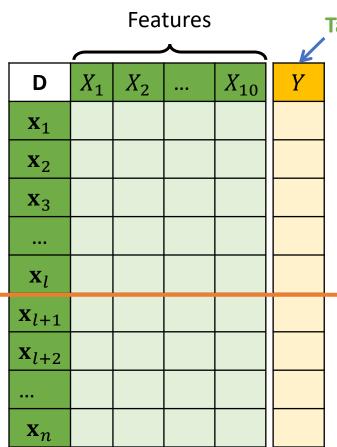
Training dataset

- Will be used to <u>train</u> a predictive model.
- Target value of each data point must be available.

Test dataset

- Will be used to <u>evaluate</u> the predictive model
- Assume that target value of each data point is not known, but it should be available.

Classification Analysis



Target class

For classification analysis

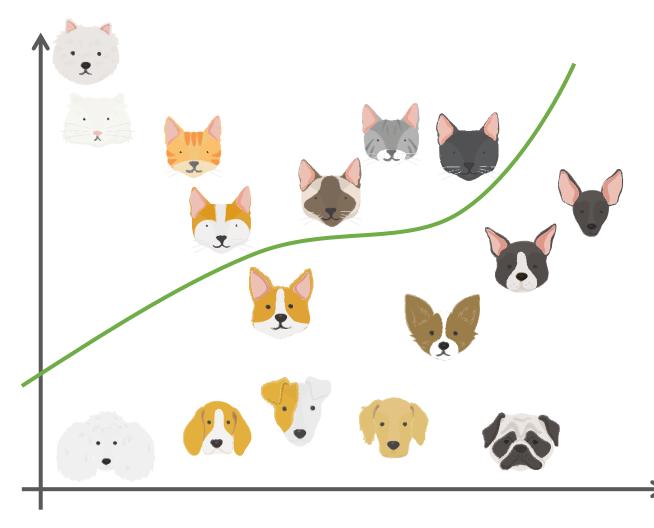
- The value we want to predict is categorical data.
- Known as class

Example

We know some characteristics of an animal, and we want to predict it is a cat or a dog.

cat or dog?

Classification Analysis

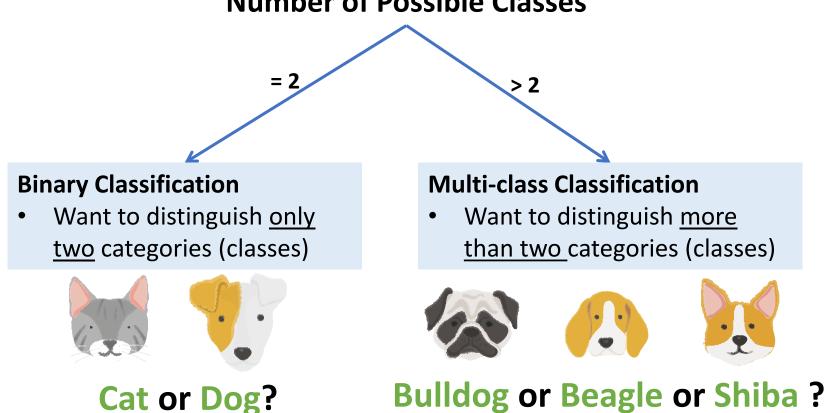


The task of classification is one of finding separating lines that separate classes of data from a training dataset as best as possible.

Classification Analysis

Types of Classification Problems

Number of Possible Classes



K-Nearest Neighbor

Classification Analysis

K-Nearest Neighbor classifier <u>assigns</u> the <u>class label of an unseen data with the</u> <u>majority class labels of k neighbor data</u> (in the training dataset)

How the k-nearest neighbor works

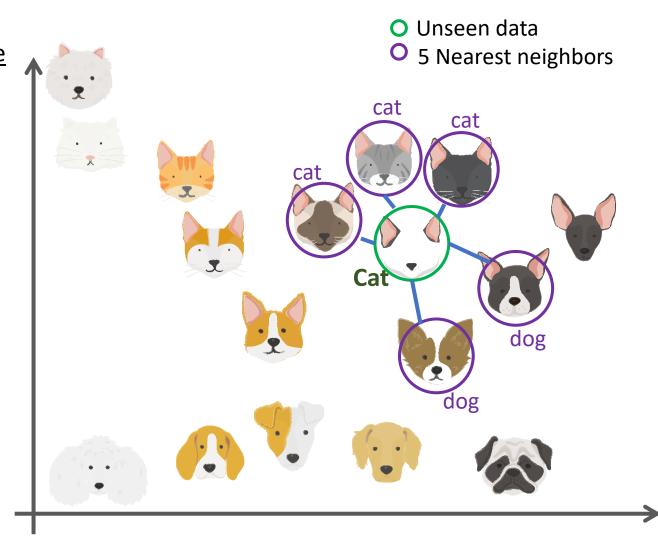
STEP 1: Calculate distances between an unseen data and training data

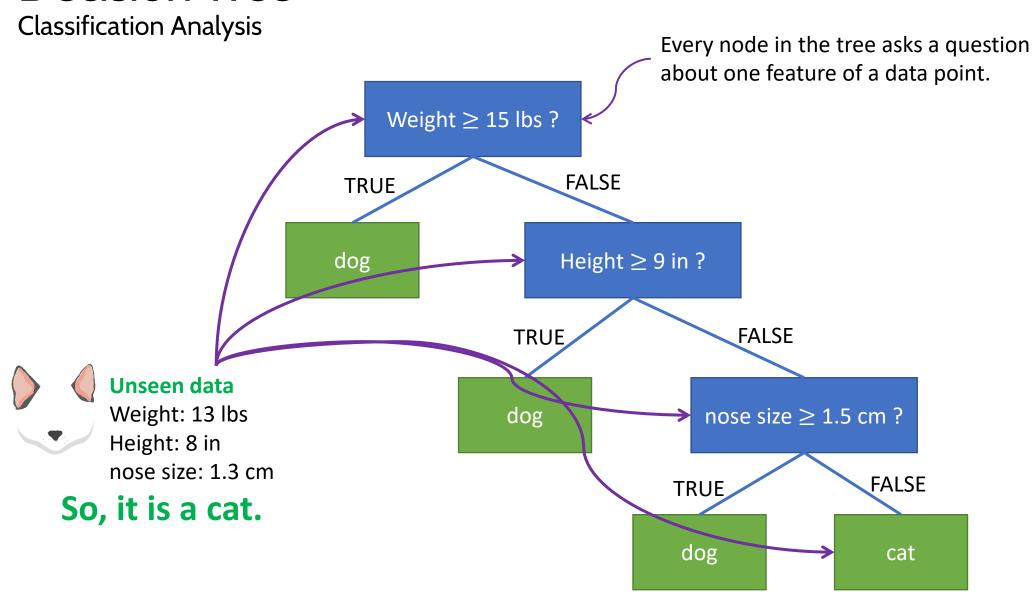
STEP 2: Find *k* nearest neighbor

STEP 3: Find majority class label

STEP 4: Assign the majority class label to

the class label of the unseen data





Classification Analysis

Construct a decision tree

STEP 1: Given a training data D, find the single feature (and cutoff for that feature, if it's numerical) that <u>best partitions your data into classes</u>.

STEP 2: This single best feature/cutoff becomes the root of your decision tree.

STEP 3: Partition *D* up according to the root node.

STEP 4: Recursively train each of the child nodes on its partition of the data until all of the data points in the partition have the same label.

D	Weight	Height	Nose size	Label
\mathbf{x}_1	8	8	1.6	Dog
\mathbf{x}_2	50	40	3	Dog
\mathbf{x}_3	8	9	1.3	Cat
\mathbf{x}_4	15	12	2.5	Dog
X ₅	9	9.8	1.4	Cat

FALSE

Weight \geq 15 lbs ?

TRUE

DWeightHeightNose sizeLabel \mathbf{x}_2 50403Dog \mathbf{x}_4 15122.5Dog

D	Weight	Height	Nose size	Label
\mathbf{x}_1	8	8	1.6	Dog
\mathbf{x}_3	8	9	1.3	Cat
x ₅	9	9.8	1.4	Cat

Classification Analysis

Weight \geq 15 lbs?

Construct a decision tree

STEP 1: Given a training data D, find the single feature (and cutoff for that feature, if it's numerical) that <u>best partitions your data into classes</u>.

STEP 2: This single best feature/cutoff becomes the root of your decision tree.

STEP 3: Partition *D* up according to the root node.

STEP 4: Recursively train each of the child nodes on its partition of the data until all of the data points in the partition have the same label.

FALSE

D	Weight	Height	Nose size	Label
\mathbf{x}_1	8	8	1.6	Dog
\mathbf{x}_3	8	9	1.3	Cat
x ₅	9	8.5	1.4	Cat

Height \geq 9 in ?

TRUE

FALSE

D	Weight	Height	Nose size	Label
x ₃	8	9	1.3	Cat

D	Weight	Height	Nose size	Label
\mathbf{x}_1	8	8	1.6	Dog
x ₅	9	8.5	1.4	Cat

Classification Analysis

Height \geq 9 in ?

Construct a decision tree

STEP 1: Given a training data D, find the single feature (and cutoff for that feature, if it's numerical) that <u>best partitions your data into classes</u>.

STEP 2: This single best feature/cutoff becomes the root of your decision tree.

STEP 3: Partition *D* up according to the root node.

STEP 4: Recursively train each of the child nodes on its partition of the data until all of the data points in the partition have the same label.

Weight

8

D

 \mathbf{X}_1

Height

8

L HA	LSE

D	Weight	Height	Nose size	Label
\mathbf{x}_1	8	8	1.6	Dog
x ₅	9	8.5	1.4	Cat

nose size \geq 1.5 cm ?

TRUE

ose size	Label	
1.6	Dog	

FALSE

D	Weight	Height	Nose size	Label
x ₅	9	8.5	1.4	Cat

Classification Analysis

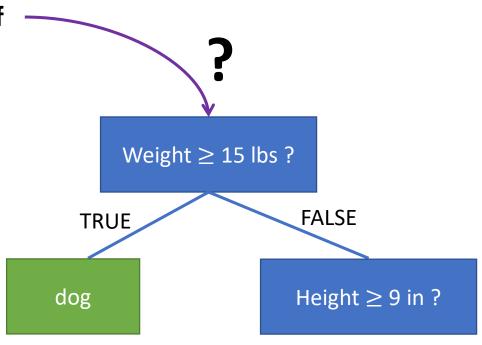
How to determine the best feature and cutoff

The most common ones are:

- Information gain
- Gini impurity.

You can find more details in:

- Zaki, M., & Meira, W. (2014). Data mining and analysis: Fundamental concepts and algorithms. New York: Cambridge University Press.
- https://en.wikipedia.org/wiki/Decision_tree_ learning



Bayes Theorem:

The *prior*, the initial degree of belief in **A**.

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Probability of *A* happening, given that *B* has occurred

The likelihood of event **B** occurring given that **A** is true.

Thomas Bayes 1701-1761

Source:

https://en.wikipedia.org/wiki/Thomas_B ayes#/media/File:Thomas_Bayes.gif

Classification Analysis

<u>Classify</u> whether the day is suitable for <u>playing golf</u>, given the <u>features</u> <u>of the day</u>.

Bayes theorem can be rewritten as:

$$P(y|\mathbf{x}) = \frac{P(y)P(\mathbf{x}|y)}{P(\mathbf{x})}$$

We want to classify

D	Outlook	Temperature	Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
\mathbf{x}_5	Sunny	Cool	Normal	False	Yes
\mathbf{x}_6	Sunny	Cool	Normal	True	No
x ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy	Mild	High	False	No
X ₉	Rainy	Cool	Normal	False	Yes
x ₁₀	Sunny	Mild	Normal	False	Yes
x ₁₁	Rainy	Mild	Normal	True	Yes
X ₁₂	Overcast	Mild	High	Ture	Yes
x ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

Classification Analysis

How the Naïve Bayes works

STEP 1: Calculate P(y) for all possible value of y from the training dataset.

STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.

STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$

STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of \mathbf{x}

We want to classify

D	Outlook	Temperature	Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
x ₃	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
X ₅	Sunny	Cool	Normal	False	Yes
x ₆	Sunny	Cool	Normal	True	No
x ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy	Mild	High	False	No
X 9	Rainy	Cool	Normal	False	Yes
X ₁₀	Sunny	Mild	Normal	False	Yes
X ₁₁	Rainy	Mild	Normal	True	Yes
X ₁₂	Overcast	Mild	High	Ture	Yes
x ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

Classification Analysis

How the Naïve Bayes works

- STEP 1: Calculate P(y) for all possible value of y from the training dataset.
- STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.
- STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$
- STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of \mathbf{x}

$$P(\text{Play golf} = \text{No}) = \frac{5}{14}$$

 $P(\text{Play golf} = \text{Yes}) = \frac{9}{14}$

We want to classify

D	Outlook	Temperature	Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
\mathbf{x}_5	Sunny	Cool	Normal	False	Yes
\mathbf{x}_6	Sunny	Cool	Normal	True	No
X ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy	Mild	High	False	No
X ₉	Rainy	Cool	Normal	False	Yes
X ₁₀	Sunny	Mild	Normal	False	Yes
X ₁₁	Rainy	Mild	Normal	True	Yes
X ₁₂	Overcast	Mild	High	Ture	Yes
X ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

How the Naïve Bayes works

- STEP 1: Calculate P(y) for all possible value of y from the training dataset.
- STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.
- STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$
- STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of \mathbf{x}

$$P(\text{Outlook} = \text{Sunny}|\text{Play golf} = \text{No}) = \frac{2}{5}$$

 $P(\text{Outlook} = \text{Sunny}|\text{Play golf} = \text{Yes}) = \frac{3}{9}$

We want to classify

D	Outlook Temperature		Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
X ₅	Sunny	Cool	Normal	False	Yes
x ₆	Sunny	Cool	Normal	True	No
x ₇	Overcast Cool		Normal	True	Yes
x ₈	Rainy	Mild	High	False	No
X 9	Rainy	Cool	Normal	False	Yes
X ₁₀	Sunny Mild		Normal	False	Yes
X ₁₁	Rainy	Rainy Mild		True	Yes
X ₁₂	Overcast	Mild	High	Ture	Yes
x ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

How the Naïve Bayes works

STEP 1: Calculate P(y) for all possible value of y from the training dataset.

STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.

STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$

STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of \mathbf{x}

$$P(\text{Temperature} = \text{Hot}|\text{Play golf} = \text{No}) = \frac{2}{5}$$

 $P(\text{Temperature} = \text{Hot}|\text{Play golf} = \text{Yes}) = \frac{2}{9}$

We want to classify

D	Outlook	Temperature	Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
\mathbf{x}_5	Sunny	Cool	Normal	False	Yes
x ₆	Sunny	Cool	Normal	True	No
X ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy	Mild	High	False	No
X ₉	Rainy	Cool	Normal	False	Yes
X ₁₀	Sunny	Mild	Normal	False	Yes
X ₁₁	Rainy	Mild	Normal	True	Yes
X ₁₂	Overcast Mild		High	Ture	Yes
X ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

How the Naïve Bayes works

STEP 1: Calculate P(y) for all possible value of y from the training dataset.

STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.

STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$

STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of \mathbf{x}

$$P(\text{Humidity} = \text{Normal}|\text{Play golf} = \text{No}) = \frac{1}{5}$$

 $P(\text{Humidity} = \text{Normal}|\text{Play golf} = \text{Yes}) = \frac{6}{9}$

We want to classify

D	Outlook	Temperature	Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
\mathbf{x}_5	Sunny	Cool	Normal	False	Yes
x ₆	Sunny	Cool	Normal	True	No
X ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy	Mild	High	False	No
X ₉	Rainy	Cool	Normal	False	Yes
X ₁₀	Sunny	Mild	Normal	False	Yes
X ₁₁	Rainy	Mild	Normal	True	Yes
X ₁₂	Overcast Mild		High	Ture	Yes
X ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

Classification Analysis

How the Naïve Bayes works

- STEP 1: Calculate P(y) for all possible value of y from the training dataset.
- STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.
- STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$
- STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of \mathbf{x}

$$P(\text{Windy} = \text{True}|\text{Play golf} = \text{No}) = \frac{3}{5}$$

 $P(\text{Windy} = \text{True}|\text{Play golf} = \text{Yes}) = \frac{3}{9}$

We want to classify

D	Outlook	Outlook Temperature		Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
\mathbf{x}_5	Sunny	Cool	Normal	False	Yes
\mathbf{x}_6	Sunny	Cool	Normal	True	No
X ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy Mild		High	False	No
X ₉	Rainy	Cool	Normal	False	Yes
X ₁₀	Sunny	Mild	Normal	False	Yes
X ₁₁	K ₁₁ Rainy Mi		Normal	True	Yes
X ₁₂	C ₁₂ Overcast Mild		High	Ture	Yes
X ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

Classification Analysis

How the Naïve Bayes works

STEP 1: Calculate P(y) for all possible value of y from the training dataset.

STEP 2: Calculate $P(\mathbf{x}|y) = \prod_{i=1}^{p} P(x_i|y)$ for all possible value of y from the training dataset.

STEP 3: Calculate $P(y|\mathbf{x}) = P(y) \prod_{i=1}^{p} P(x_i|y)$

STEP 4: Assign y that reach the highest $P(y|\mathbf{x})$ to the class label of x

$$P(\text{Play golf} = \text{No}|\text{Sunny, Hot, Normal, True})$$
$$= \frac{5}{14} \times \frac{2}{5} \times \frac{2}{5} \times \frac{1}{5} \times \frac{3}{5} = 0.0069$$

$$P(\text{Play golf} = \text{Yes}|\text{Sunny, Hot, Normal, True})$$
$$= \frac{9}{14} \times \frac{3}{9} \times \frac{2}{9} \times \frac{6}{9} \times \frac{3}{9} = \mathbf{0.0106}$$

So, it is suitable to **play golf** given the conditions (Outlook = Sunny, Temperature = Hot, Humidity = Normal and Windy = True).

We want to classify

 $\mathbf{x} = (Sunny, Hot, Normal, True)$ $P(\text{Play golf} = \text{No}) = \frac{5}{14}$ $P(\text{Play golf} = \text{Yes}) = \frac{9}{14}$ $P(\text{Outlook} = \text{Sunny}|\text{Play golf} = \text{No}) = \frac{2}{5}$ $P(\text{Outlook} = \text{Sunny}|\text{Play golf} = \text{Yes}) = \frac{3}{9}$ $P(\text{Temperature} = \text{Hot}|\text{Play golf} = \text{No}) = \frac{2}{5}$ $P(\text{Temperature} = \text{Hot}|\text{Play golf} = \text{Yes}) = \frac{2}{9}$ $P(\text{Humidity} = \text{Normal}|\text{Play golf} = \text{No}) = \frac{1}{5}$ $P(\text{Humidity} = \text{Normal}|\text{Play golf} = \text{Yes}) = \frac{6}{9}$ $P(\text{Windy} = \text{True}|\text{Play golf} = \text{No}) = \frac{3}{5}$ $P(\text{Windy} = \text{True}|\text{Play golf} = \text{Yes}) = \frac{3}{9}$

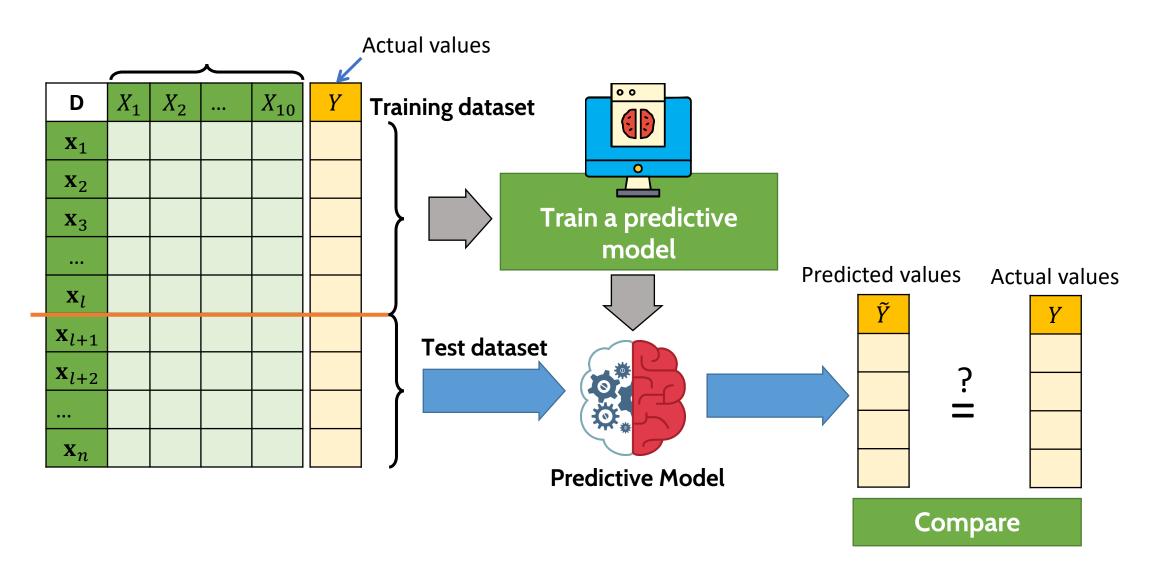
Classification Analysis

Quiz:

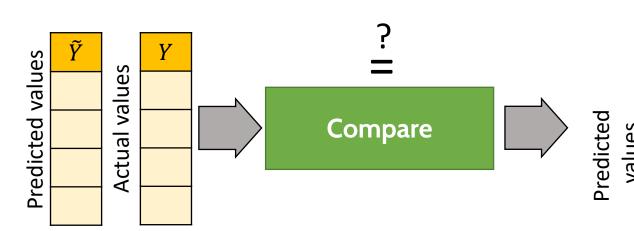
It is suitable to play golf or not given the conditions (Outlook = Rainy, Temperature = Mild, Humidity = Normal and Windy = False).

D	Outlook	Temperature	Humidity	Windy	Play golf
\mathbf{x}_1	Rainy	Hot	High	False	No
\mathbf{x}_2	Rainy	Hot	High	True	No
\mathbf{x}_3	Overcast	Hot	High	False	Yes
\mathbf{x}_4	Sunny	Mild	High	False	Yes
x ₅	Sunny	Cool	Normal	False	Yes
x ₆	Sunny	Cool	Normal	True	No
X ₇	Overcast	Cool	Normal	True	Yes
x ₈	Rainy Mild		High	False	No
X 9	Rainy Cool		Normal	False	Yes
x ₁₀	Sunny	Mild	Normal	False	Yes
X ₁₁	Rainy	Mild	Normal	True	Yes
X ₁₂	Overcast Mild		High	Ture	Yes
X ₁₃	Overcast	Hot	Normal	False	Yes
X ₁₄	Sunny	Mild	High	True	No

Classification Analysis



Classification Analysis



Actual values

		Positive	Negative
222	Positive	TP	FP
\alpha \	Negative	FN	TN

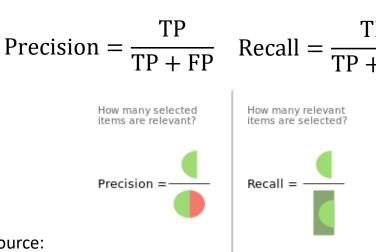
true positives (TP) true negatives (TN) false positives (FP) false negatives (FN)

Confusion matrix

$$Accuracy = \frac{(TP + TN)}{Total}$$

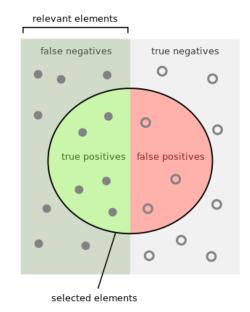
$$Misclassification Rate = \frac{(FP + FN)}{Total}$$

$$= 1 - Accuracy$$



Source:

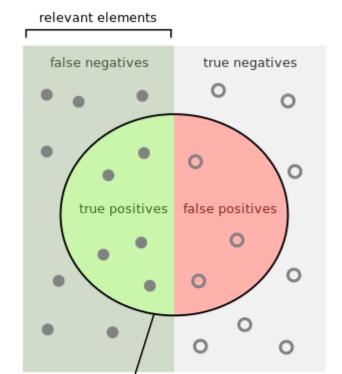
https://en.wikipedia.org/wiki/Precision and recall

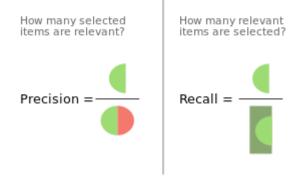


Classification Analysis

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$





selected elements

Classification Analysis

Example

Actual values

		setosa	versicolor	virginica
alues	setosa	10	2	4
Predicted values	versicolor	1	16	1
Pred	virginica	0	2	9

 $Recall_{virginica} = ?$

 $Precision_{virginica} = ?$

Accuracy =
$$\frac{(10+16+9)}{45} = \frac{35}{45} = 0.78$$

Misclassification Rate = 1 - 0.78 = 0.22

Recall_{setosa} =
$$\frac{10}{10+1+0} = \frac{10}{11} = 0.91$$

$$Precision_{setosa} = \frac{10}{10 + 2 + 4} = \frac{10}{16} = 0.625$$

Recall_{versicolor} =
$$\frac{16}{2+16+2} = \frac{16}{20} = 0.8$$

Precision_{versicolor} =
$$\frac{16}{1+16+1} = \frac{16}{18} = 0.89$$

Classification Analysis

Example

Actual values

		Cat	Dog
cted Jes	Cat	5	2
Predicted values	Dog	3	3

Accuracy
$$=$$
 $\frac{(5+3)}{13} = \frac{8}{13} = 0.62$

Misclassification Rate
$$=$$
 $\frac{(2+3)}{13} = \frac{5}{13} = 0.38$

Recall =
$$\frac{5}{5+3} = \frac{5}{8} = 0.625$$

Precision =
$$\frac{5}{5+2} = \frac{5}{7} = 0.714$$

Classification Analysis

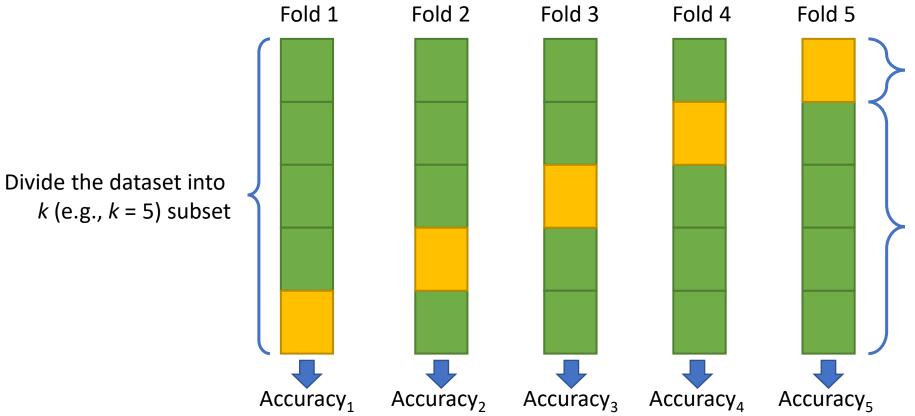
Cross-validation

Perform *k* times that each subset is selected to be the validation set at one time

Training set

V

Validation set



Use a subset as validation set

Use the remaining sets as training set

 $Accuracy_{average}$ $= \frac{1}{k} \sum_{i=1}^{k} Accuracy_{i}$

Regression Analysis

Independent variable

Dependent variable

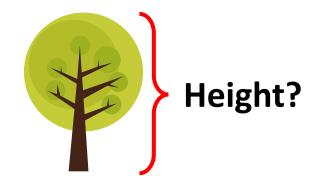
D	X_1	X_2		X ₁₀	Y	
\mathbf{x}_1						
\mathbf{x}_2						
\mathbf{x}_3						
:						
\mathbf{x}_{l}						
\mathbf{x}_{l+1}						
\mathbf{x}_{l+2}						
:						
\mathbf{x}_n						

For regression analysis

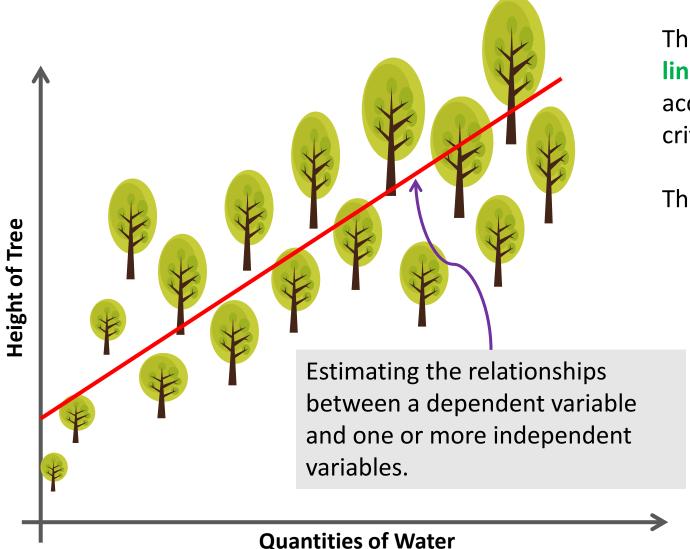
- The value we want to predict is **numeric data**.
- Known as **Dependent variable**

Example

- We know <u>quantities of water</u> and <u>fertilizer</u> providing to a tree for a month
- We want to predict the growth rate (height) of the tree.



Regression analysis

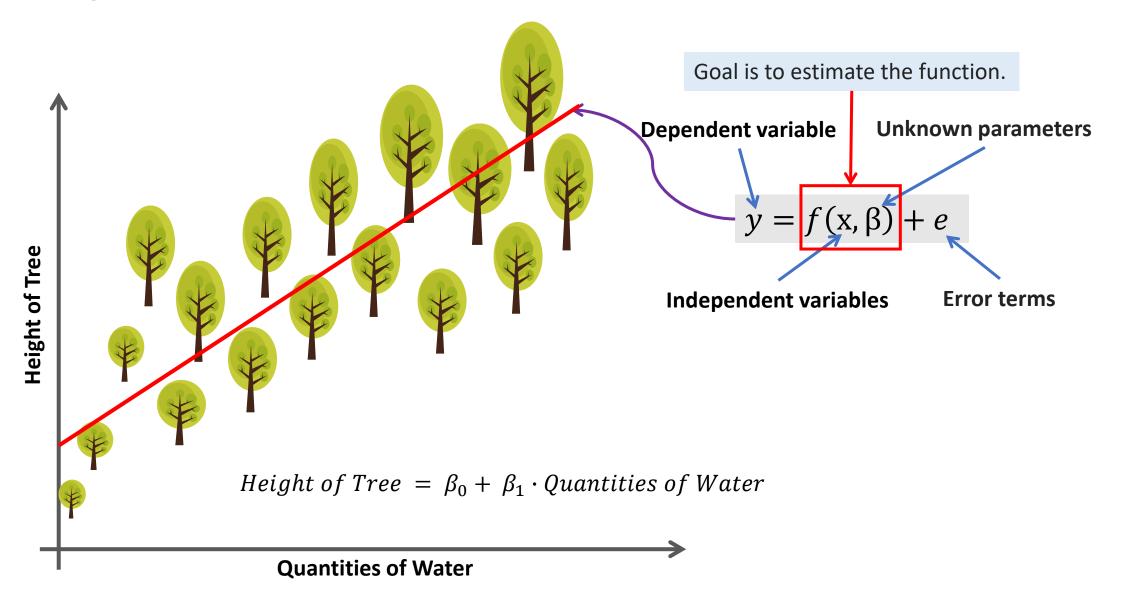


The task of regression is one of finding a line that most closely fits the data according to a specific mathematical criterion.

The line can be used for

- prediction and forecasting
- describing relationships between the independent and dependent variables.

Regression analysis



Regression Analysis

Types of Regression Problems

Number of Independent Variable

= 1 > 1

Simple Regression

Concerns two-dimensional sample points:

- one independent variable
- one dependent variable

Multiple Regression

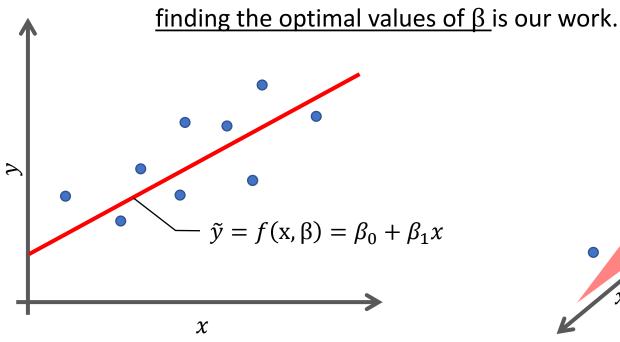
Uses several independent variables to predict the outcome of a dependent variable.

Linear Regression

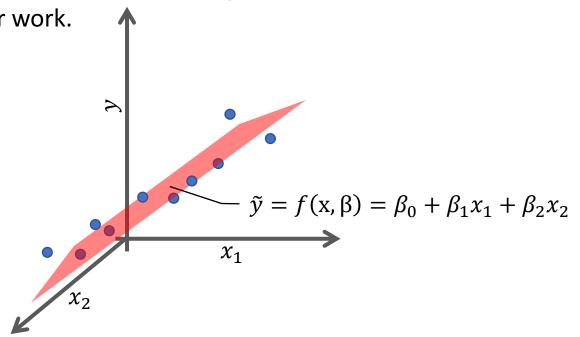
Regression Analysis

We aim to fit a line or hyperplane to a scattering of data.

As the line or hyperplane is described by the parameters β ,



Simple Linear Regression



Multiple Linear Regression

Linear Regression Regression Analysis

The value of parameters will be determined by fitting the line to training data.

Done by: minimize an *error* function.



Linear Regression

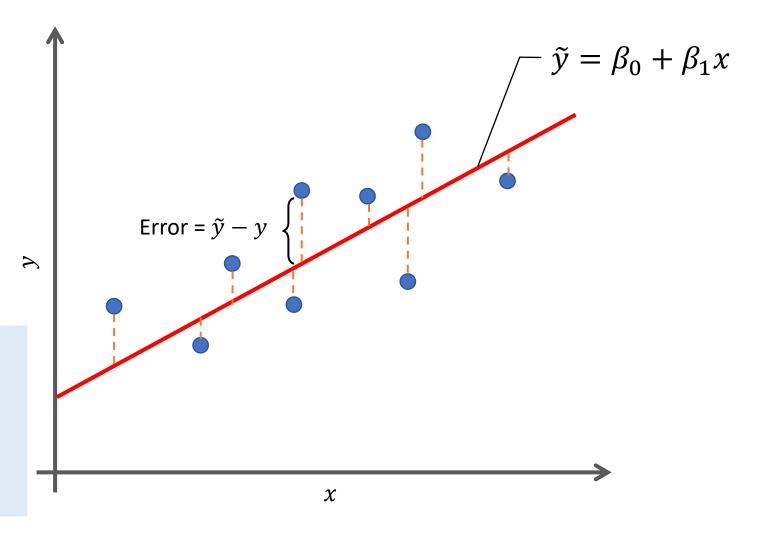
Regression Analysis

Sum of squared errors

$$E(\beta) = \sum_{i=1}^{n} (\tilde{y}_i - y_i)^2$$
$$= \sum_{i=1}^{n} (\beta_0 + \beta_1 x_i - y_i)^2$$

So, we find the parameter $\beta = [\beta_0, \beta_1]$ that provide a small value for $E(\beta)$.

This problem can be solved by optimization tools.



Linear Regression

Regression Analysis

Extend to multiple linear regression

$$\tilde{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$\tilde{y} = \beta_0 + \sum_{j=1}^p \beta_j x_j$$

The sum of squared error function can be defined by

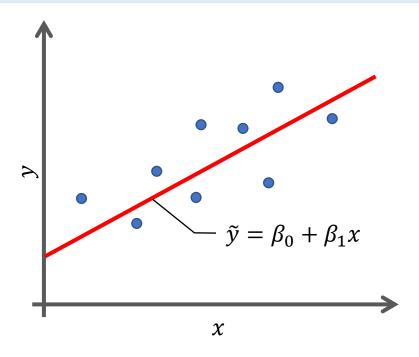
$$E(\beta) = \sum_{i=1}^{n} (\tilde{y}_i - y_i)^2$$

$$E(\beta) = \sum_{i=1}^{n} \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j - y_i\right)^2$$

Polynomial Regression

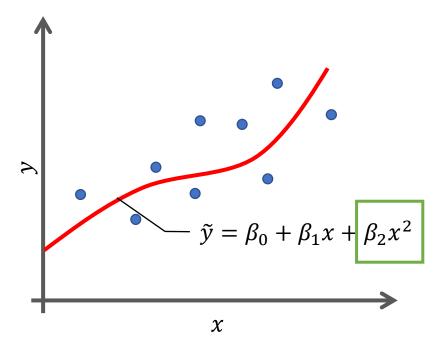
Regression Analysis

Linear Regression



Relationship between the independent variable x and the dependent variable y is a linear model.

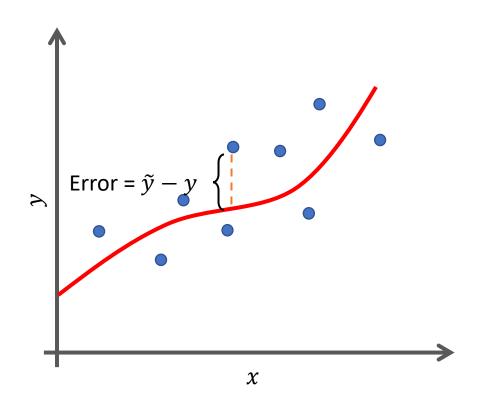
Polynomial Regression



Relationship between the independent variable x and the dependent variable y is modelled as an n^{th} degree polynomial in x. (i.e. n=2)

Polynomial Regression

Regression Analysis



The general form of polynomial regression model:

$$\tilde{y} = \beta_0 + \sum_{d=1}^{M} \beta_d x^d$$

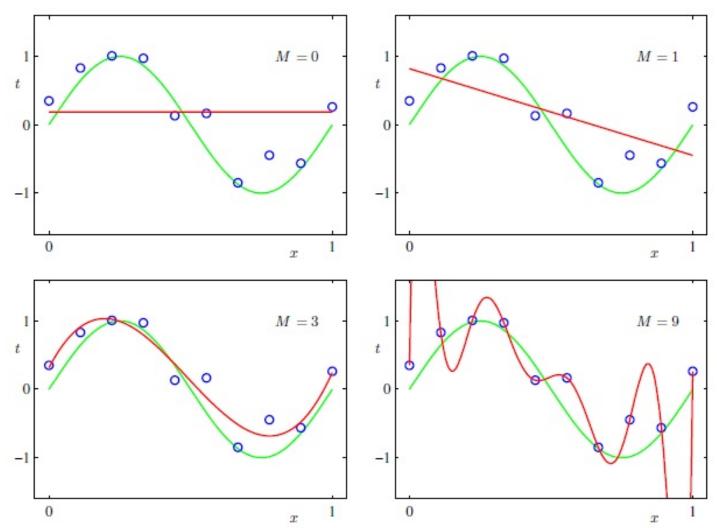
The best values of parameter $\beta = [\beta_0, \beta_1, ..., \beta_M]$ can be determined by minimizing the sum of squared errors:

$$E(\beta) = \sum_{i=1}^{n} (\tilde{y}_i - y_i)^2$$

$$E(\beta) = \sum_{i=1}^{n} \left(\beta_0 + \sum_{d=1}^{M} \beta_d x^d - y_i\right)^2$$

Polynomial Regression

Regression Analysis



Plot of polynomials having various orders M, shown as red curves.

Source: Christopher M. Bishop (2006).

Pattern Recognition and Machine Learning.

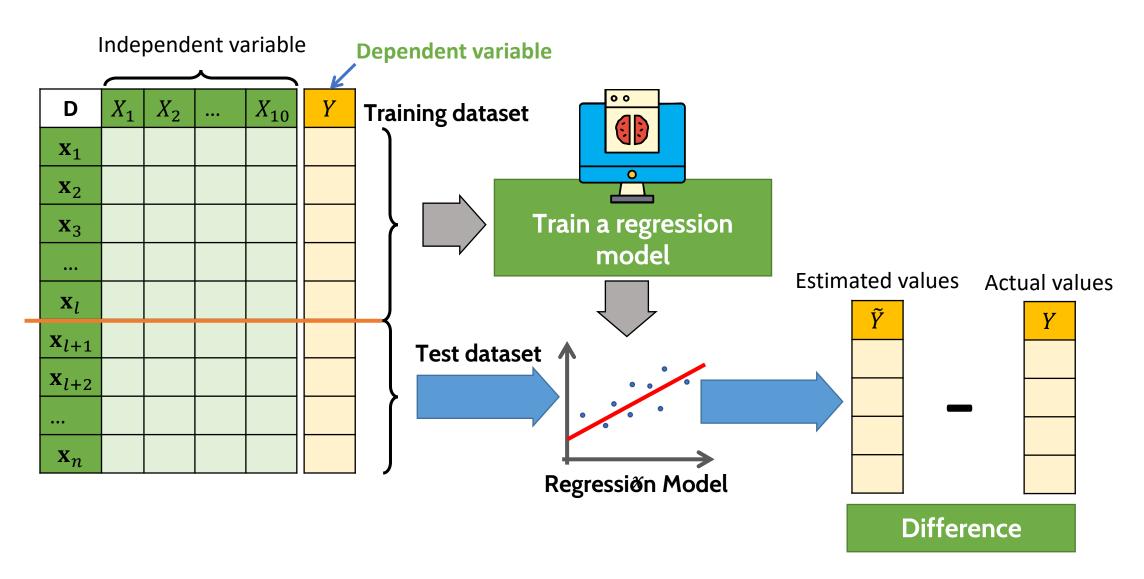
New York: Springer-Verlag.

What happens when we go to a much higher order polynomial?

Over-fitting!

Regression Assessment

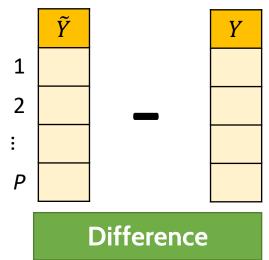
Regression Analysis



Regression Assessment

Regression Analysis

Estimated values Actual values



Mean Squared Error (MSE)

$$MSE = \frac{1}{P} \sum_{i=1}^{P} (\tilde{y}_i - y_i)^2$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{P} \sum_{i=1}^{P} (\tilde{y}_i - y_i)^2}$$

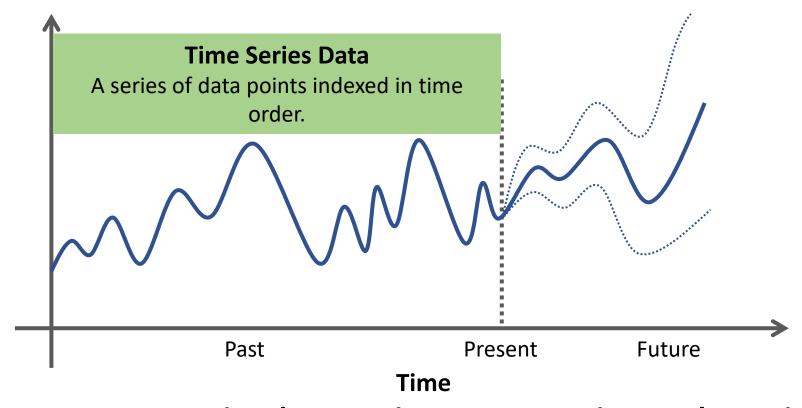
Mean Absolute Error (MAE)

$$MAE = \frac{1}{P} \sum_{i=1}^{P} |\tilde{y}_i - y_i|$$

MSE, RMSE and MAE \geq 0

A lower value and is better than a higher one.

Time Series Data



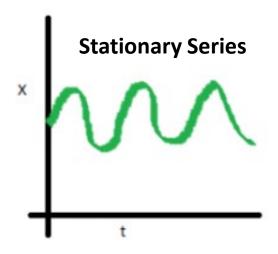
Time series data can be found in **signal processing**, **econometrics**, **mathematical finance**, **weather forecasting**, **control engineering**, **astronomy**, **communications engineering**, **etc**.

Characteristics of Time Series Data

Stationary

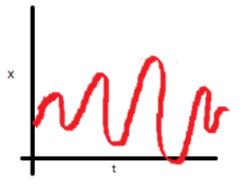
Statistical properties do not change over time.

- Mean
- Variance
- Covariance

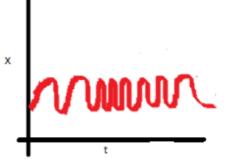


Source: https://medium.com/greyatom/time-series-b6ef79c27d31





Variance of the series is a function of time.

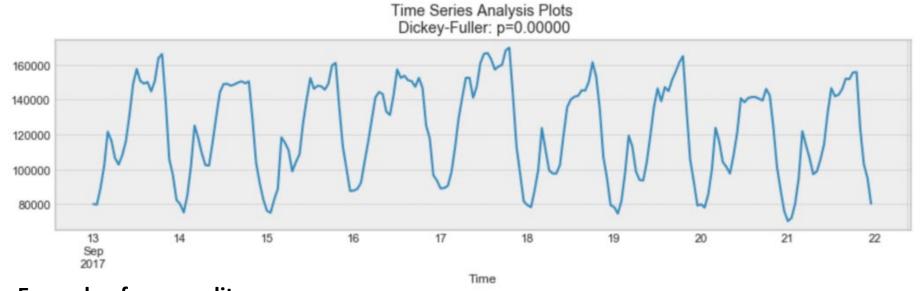


The spread becomes closer as the time increases.

Characteristics of Time Series Data

Seasonality

Periodic fluctuations - pattern that recurs or repeats over regular intervals.



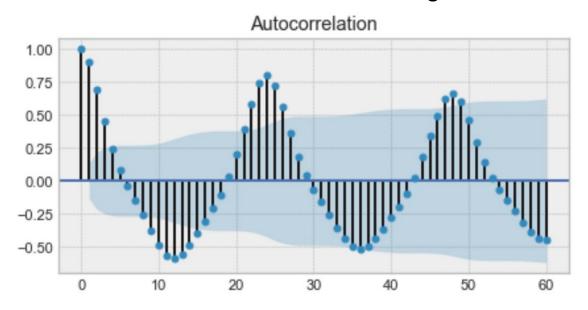
Example of seasonality

Source: https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775

Characteristics of Time Series Data

Autocorrelation

- Internal correlation in a time series.
- The similarity between observations as a function of the time lag between them.

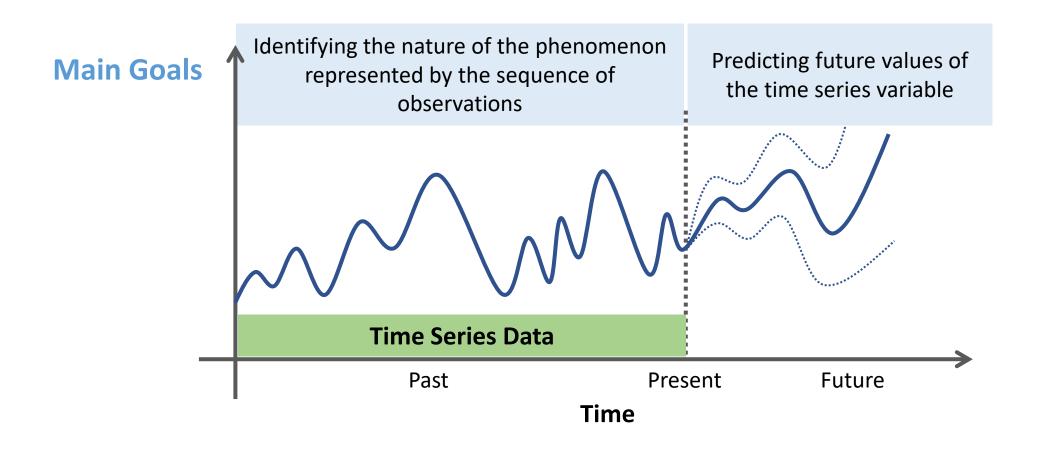


Example of an autocorrelation plot - we will find a very similar value at every 24 unit of time.

Source: https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775

Time Series Analysis

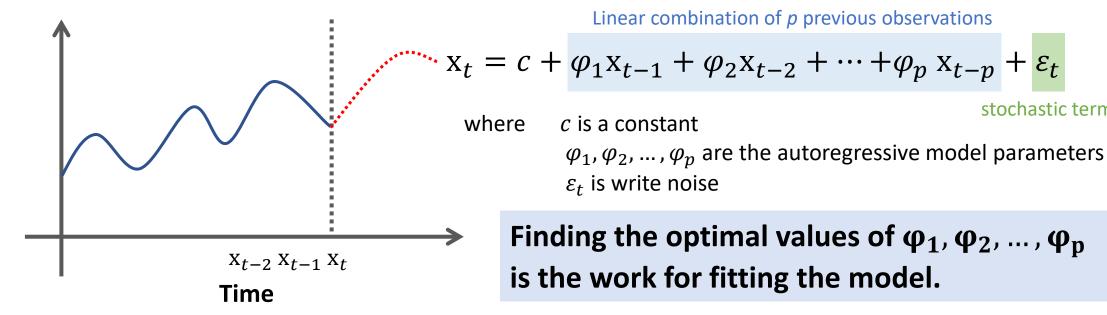
Analysis techniques that deal with time series data.



Time Series Analysis

The output variable depends linearly on:

- Its own previous values
- A stochastic term (an imperfectly predictable term)



There are many ways to estimate the parameters, such as

stochastic term

- The ordinary least squares procedure
- Method of moments (through Yule–Walker equations).

Time Series Analysis

AR(p) model:
$$\mathbf{x}_t = c + \sum_{i=1}^p \varphi_i \mathbf{x}_{t-i} + \varepsilon_t$$

How can we determine the maximum lag p?

Decide based on:

- Autocorrelation function
- Partial autocorrelation function

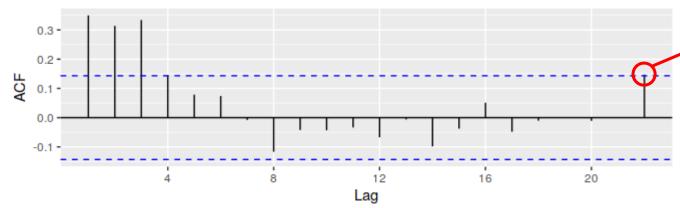
Time Series Analysis

Autocorrelation Function

- Autocorrelation refers to how correlated a time series is with its past values.
- It measures the linear relationship between lagged values of a time series.

$$ACF(k) = \frac{\sum_{t=k+1}^{T} (x_t - \bar{x})(x_{t-k} - \bar{x})}{\sum_{t=1}^{k} (x_t - \bar{x})^2}$$

where T is the length of the time series.



·Always measured between +1 and -1.

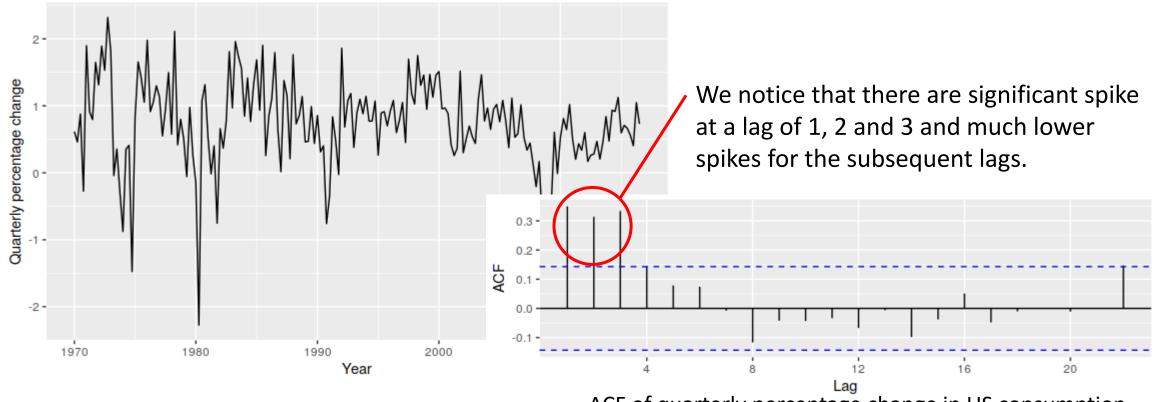
- +1 : a strong positive association
- -1: a strong negative association
- 0 : no association.

ACF of quarterly percentage change in US consumption.

Source: https://otexts.com/fpp2/non-seasonal-arima.html

Time Series Analysis

Quarterly percentage change in US consumption Source: https://otexts.com/fpp2/non-seasonal-arima.html expenditure.



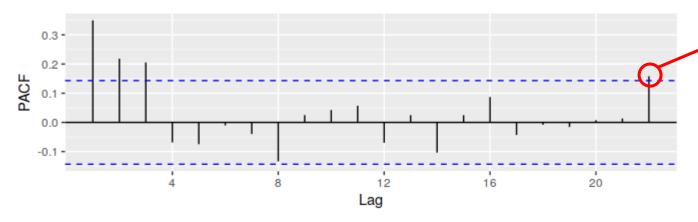
ACF of quarterly percentage change in US consumption

So, our AR model becomes $x_t = c + \varphi_1 x_{t-1} + \varphi_2 x_{t-2} + \varphi_3 x_{t-3} + \varepsilon_t$ AR(3)

Time Series Analysis

Partial Autocorrelation Function

• It measures the relationship between x_t and x_{t-k} after removing the effects of lags 1,2,3, ..., k-1.



Always measured between +1 and -1.

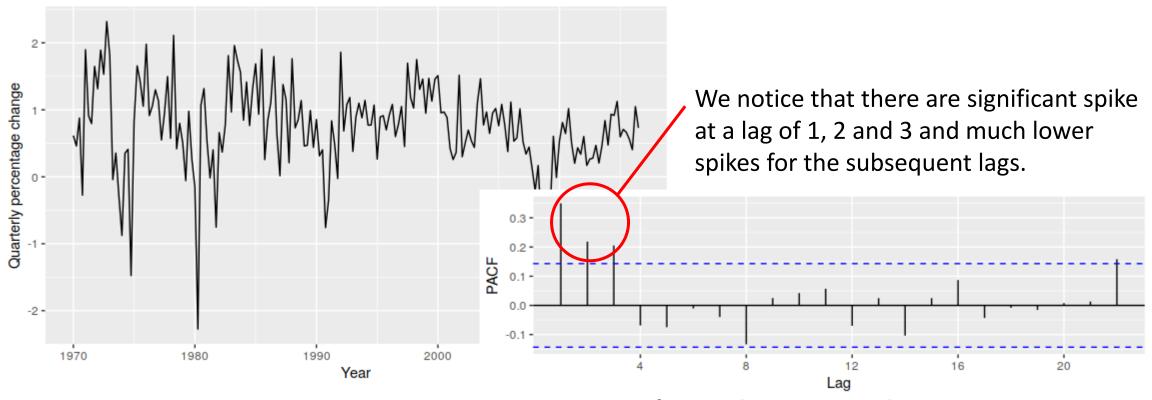
- +1 : a strong positive association
- -1: a strong negative association
- 0 : no association.

PACF of quarterly percentage change in US consumption.

Source: https://otexts.com/fpp2/non-seasonal-arima.html

Time Series Analysis

Quarterly percentage change in US consumption Source: https://otexts.com/fpp2/non-seasonal-arima.html expenditure.

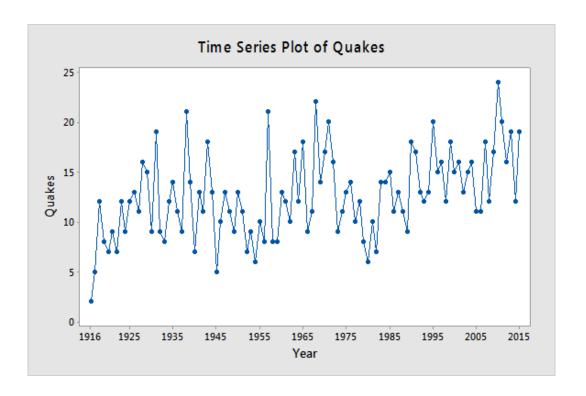


PACF of quarterly percentage change in US consumption

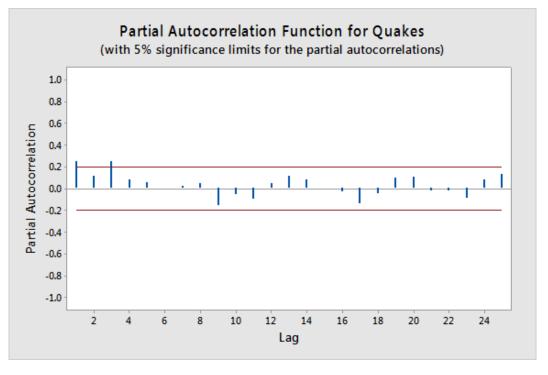
So, our AR model becomes $x_t = c + \varphi_1 x_{t-1} + \varphi_2 x_{t-2} + \varphi_3 x_{t-3} + \varepsilon_t$ AR(3)

Time Series Analysis

The annual number of worldwide earthquakes with magnitude greater than 7 on the Richter scale for n = 100 years



Quiz:What is an appropriate AR model of quake?



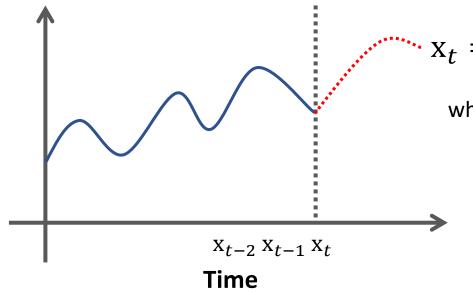
Source: https://online.stat.psu.edu/stat501/lesson/14/14.1

Moving Average Model

Time Series Analysis

The output variable depends linearly on:

- Past forecast errors
- A stochastic term (an imperfectly predictable term)



Linear combination of q previous forecast errors

$$\mathbf{x}_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_p \varepsilon_{t-q}$$

where μ is the mean of the series

 $\theta_1, \theta_2, \dots, \theta_q$ are the moving average model parameters ε_t is white noise

Finding the optimal values of $\theta_1, \theta_2, \dots, \theta_q$ is the work for fitting the model.

- Fitting the MA estimates is more complicated than it is in autoregressive models, because the <u>lagged error terms are not</u> observable.
- Iterative non-linear fitting procedures need to be used.

Moving Average Model

Time Series Analysis

MA(q) model :
$$\mathbf{x}_t = \mu + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$$

How can we determine the maximum lag q?

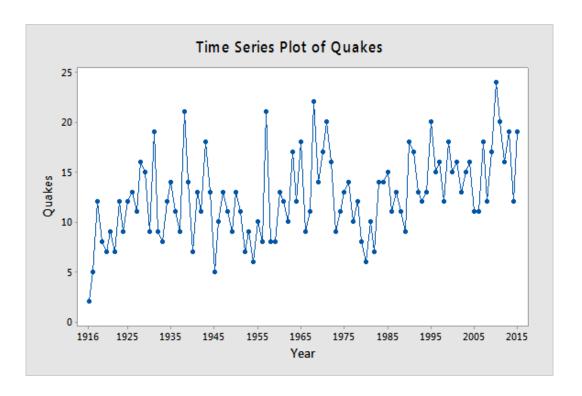
Decide based on:

- Autocorrelation function
- Partial autocorrelation function

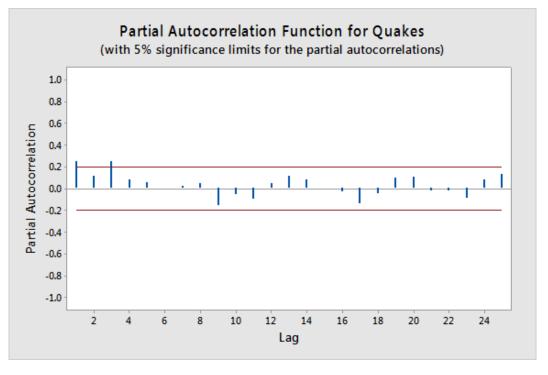
Moving Average Model

Time Series Analysis

The annual number of worldwide earthquakes with magnitude greater than 7 on the Richter scale for n = 100 years



Quiz:What is an appropriate MA model of quake?



Source: https://online.stat.psu.edu/stat501/lesson/14/14.1

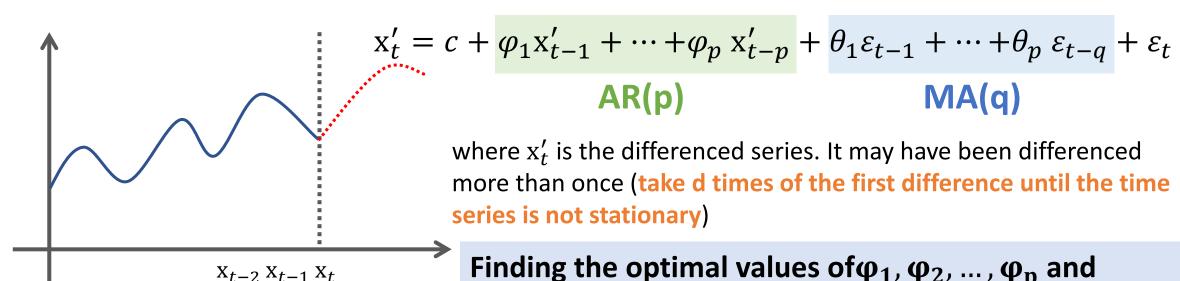
Autoregressive Integrated Moving Average (ARIMA)

Time Series Analysis

Time

Combination of autoregressive and moving average models.

- Autoregression AR(p): $x_t = c + \sum_{i=1}^p \varphi_i x_{t-i} + \varepsilon_t$
- Moving Average MA(q): $x_t = \mu + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$
- Integration the reverse of differencing (transform non-stationarity to stationarity)



Finding the optimal values of ϕ_1 , ϕ_2 , ..., ϕ_p and θ_1 , θ_2 , ..., θ_q is the work for fitting the model.

Autoregressive Integrated Moving Average (ARIMA) Time Series Analysis

$$\mathbf{x}_t' = c + \varphi_1 \mathbf{x}_{t-1}' + \dots + \varphi_p \mathbf{x}_{t-p}' + \theta_1 \varepsilon_{t-1} + \dots + \theta_p \varepsilon_{t-q} + \varepsilon_t$$

$$\mathbf{AR(p)} \qquad \mathbf{MA(q)}$$

where x'_t is the differenced series. It may have been differenced more than once (take \underline{d} times of the first difference until the time series is not stationary)

ARIMA(p,d,q)

p, d and q are hyper-parameters that we need to determine.

Autoregressive Integrated Moving Average (ARIMA)

Time Series Analysis

Perform ARIMA

Step 1
Check stationarity

If a time series has a trend or seasonality component, it must be made stationary before we can use ARIMA to forecast.

Step 2
Difference

If the time series is not stationary, it needs to be stationarized through differencing.

Parameter **d** is determined here.

Step 3
Filter out a validation sample

This will be used to validate how accurate our model is. Use train test validation split to achieve this

Step 4
Select AR and MA terms

Use the ACF and PACF to decide whether to include an AR term(s), MA term(s), or both.

Step 5
Build the model

Build the model and set the number of periods to forecast to N (depends on your needs).

Step 6
Validate model

Compare the predicted values to the actuals in the validation sample.

Autoregressive Integrated Moving Average (ARIMA) Time Series Analysis

Determine suitable values of p and q using either AIC, AICc or BIC value.

Akaike information criterion (AIC)

$$AIC = -2\log(L) + 2(p + q + k + 1)$$

where L is the likelihood of the data, k = 1 if $c \neq 0$ and k = 0 if c = 0.

Corrected AIC (AICc)

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

Bayesian Information Criterion (BIC)

BIC = AIC +
$$[\log(T) - 2](p + q + k + 1)$$

Good models are obtained by minimizing the AIC, AICc or BIC.

Autoregressive Integrated Moving Average (ARIMA) Time Series Analysis

Determine suitable values of p and q using either AIC, AICc or BIC value.

		p in AR(p)					
		0	1	2	3	4	5
q in MA(q)	0	4588.666	4588.472	4589.884	4591.619	4592.181	4593.312
	1	4588.618	4584.675	4586.262	4588.261	4590.172	4592.002
	2	4590.031	4586.263	4588.317	4590.25	4590.726	4594.104
	3	4591.883	4589.089	4583.762	4593.013	4589.644	4590.99
	4	4592.883	4590.161	4592.254	4594.099	4583.88	4586.875
	5	4594.055	4590.793	4594.07	4596.018	4586.779	4587.788

Reference and Further Study

- J. R. Quinlan (Mar. 1996). "Improved Use of Continuous Attributes in C4.5." In: J. Artif. Int. Res. 4.1
- Sefik Ilkin Serengil (2018). A Step By Step C4.5 Decision Tree Example. Accessed on 3 March 2020. url: https://sefiks.com/2018/05/13/a-step-by-step-c4-5-decision-tree-example/
- Alaa Tharwat (2020). "Classification assessment methods." In: *J. Artif. Int. Res.* 17.1. url: https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/html
- Ronald E. Walpole and Raymond H. Meyers, Sharon L. Meyers, and Keying E. Ye (2012).
 Probability & Statistics for Engineers & Scientists. USA: Prentice Hall. isbn: 0321748239
- David A. Dickey and Wayne A. Fuller (1979). "Distribution of the Estimators for Autoregressive Time Series with a Unit Root." In: *Journal of the American Statistical Association* 74.366a
- Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin (1992). "Testing thenull hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?" In: *Journal of Econometrics* 54.1. url: https://www.sciencedirect.com/science/article/pii/030440769290104Y

Reference and Further Study

- Walter Enders (2015). Applied econometric time series. Hoboken, NJ: Wiley. isbn: 9781118808566
- Jonathan D. Cryer and Kung-Sik Chan (2008). "Parameter Estimation." In: *Time Series Analysis: With Applications in R*. New York, NY: Springer New York. isbn: 978-0-387-75959-3
- Rob J Hyndman and George Athanasopoulos (2021). Forecasting: Principles and Practice. Melbourne, Australia: OTexts. isbn: 9780987507112. url: https://otexts.com/fpp3/
- Christopher M. Bishop (2006). *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Berlin, Heidelberg: Springer-Verlag. isbn: 0387310738
- Sergios Theodoridis and Konstantinos Koutroumbas (2008). *Pattern Recognition*. USA: Academic Press, Inc. isbn: 1597492728
- Mohammed J. Zaki and Wagner Meira Jr (2014). *Data Mining and Analysis: Fundamental Concepts and Algorithms*. USA: Cambridge University Press. isbn: 0521766338