# Introduction to Data Science



Last Update: 29 June 2021

# Chapter 2 Data Collection and Acquisition

Papangkorn Inkeaw, PhD



# Outline

Data Collection and Acquisition

- 1. Data Sources
- 2. Data Representation
  - Data Matrix
  - Types of Data
  - Attributes
- 3. Preparing Data
  - Encoding of Categorical Data
  - Normalization and Standardization
  - Data Quality
  - Data Cleaning
    - Inconsistent Datatypes
    - Missing data
    - Duplicate data

## Data Sources



### Questionnaires

- Paper-based questionnaires
- Electronic-based questionnaires
- Online questionnaires



#### Web Servers

Server software, or hardware dedicated to running said software, that can satisfy World Wide Web client requests.



### Web Services

A service offered by an electronic device to another electronic device, communicating with each other via the World Wide Web

## Data Sources



#### Database

An organized collection of data, generally stored and accessed electronically from a computer system

### Logs

- Records of events.
- In computer, for example, a file that records either events that occur in an operating system or other software runs, or messages between different users of a communication software.



### **Online Repositories**

- A <u>repository</u> is a central place in which an aggregation of data is kept and maintained in an organized way, usually in computer storage.
- An <u>online repository</u> is a digital library or archive which is accessible via the internet.

## Data Sources

### **Suggested Data Sources**

- UCI Machine Learning Repository
   <u>https://archive.ics.uci.edu/ml/index.php</u>
- Kaggle https://www.kaggle.com/datasets
- Open Government Data of Thailand
   <u>https://data.go.th/</u>



Data Representation

### Example: Cosmic Dataset

|                       | name              | id     | align                 | eye        | hair       | gender | alive      | appearances | first_appear | publisher              |
|-----------------------|-------------------|--------|-----------------------|------------|------------|--------|------------|-------------|--------------|------------------------|
|                       | X <sub>1</sub>    | $X_2$  | <i>X</i> <sub>3</sub> | $X_4$      | $X_5$      | $X_6$  | $X_7$      | <i>X</i> 8  | <i>X</i> 9   | <i>X</i> <sub>10</sub> |
|                       | Spider-Man (Peter | Secret | Good                  | Hazel Eyes | Brown Hair | Male   | Living     | 4043        | Aug-62       | marvel                 |
| <b>x</b> <sub>1</sub> | Parker)           |        |                       |            |            |        | Characters |             |              |                        |
|                       | Captain America   | Public | Good                  | Blue Eyes  | White Hair | Male   | Living     | 3360        | Mar-41       | marvel                 |
| <b>x</b> <sub>2</sub> | (Steven Rogers)   |        |                       |            |            |        | Characters |             |              |                        |
|                       |                   |        |                       | •••        |            |        |            | •••         | •••          |                        |
|                       | Natalia Romanova  | Public | Good                  | Green Eyes | Red Hair   | Female | Living     | 1050        | Apr-64       | marvel                 |
| $\mathbf{x}_n$        | (Earth-616)       |        |                       |            |            |        | Characters |             |              |                        |



## Data Matrix

Data Representation

Attributes, Variable, Features, Field,...

$$\begin{array}{cccc} X_1 & X_2 & X_d \\ X_{11} & X_{12} & \cdots & X_{1d} \\ \mathbf{X}_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{array} \begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_n \end{array}$$

 $\mathbf{x}_i$  denotes the *i*th row which is a *d*-tuple given as  $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})$ 

 $X_j$  denotes the jth column which is a n-tuple given as  $X_j = (x_{1j}, x_{2j}, \dots, x_{nj})$ 



Data Representation

### Example: Cosmic Dataset

|                       | name              | id                    | align                 | eye        | hair       | gender                | alive      | appearances | first_appear | publisher              |
|-----------------------|-------------------|-----------------------|-----------------------|------------|------------|-----------------------|------------|-------------|--------------|------------------------|
|                       | X <sub>1</sub>    | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | $X_4$      | $X_5$      | <i>X</i> <sub>6</sub> | $X_7$      | <i>X</i> 8  | <i>X</i> 9   | <i>X</i> <sub>10</sub> |
|                       | Spider-Man (Peter | Secret                | Good                  | Hazel Eyes | Brown Hair | Male                  | Living     | 4043        | Aug-62       | marvel                 |
| <b>x</b> <sub>1</sub> | Parker)           |                       |                       |            |            |                       | Characters |             |              |                        |
|                       | Captain America   | Public                | Good                  | Blue Eyes  | White Hair | Male                  | Living     | 3360        | Mar-41       | marvel                 |
| <b>x</b> <sub>2</sub> | (Steven Rogers)   |                       |                       |            |            |                       | Characters |             |              |                        |
|                       |                   |                       |                       | •••        |            |                       |            | •••         | •••          |                        |
| <b>N</b> 7            | Natalia Romanova  | Public                | Good                  | Green Eyes | Red Hair   | Female                | Living     | 1050        | Apr-64       | marvel                 |
| <b>x</b> <sub>n</sub> | (Earth-616)       |                       |                       |            |            |                       | Characters |             |              |                        |



We can write an example  $\mathbf{x}_2$  as

 $\mathbf{x}_2 = (Captain America (Steven Rogers), Public, Good, Blue Eyes, White Hair, Male, Living Characters, 3360, Mar - 41, marvel)$ 

## Types of Data Data Representation



### **Quantitative Data**

- This data can be described using **numbers**.
- **Basic mathematical procedures** are possible on the set.



### **Qualitative Data**

- This data <u>cannot be</u> described using numbers and basic mathematics.
- This data is generally described using natural **categories and language**.

### Data Representation



### Numeric Attributes - Quantitative

- One that has a real-valued or integer-valued domain.
- Such as age, height, grade, frequency, etc.

### Discrete

- Take on a finite or countably infinite set
- Such as integer, grade, number of object, etc.

### Continuous

- Take on any real value
- Such as height, weight, size,
- etc.



### **Categorical Attributes**

- One that has a set-valued domain composed of a set of symbols.
- Such as Gender = {M,F}, Education = {High School, BS, MS, PhD}, etc.

Data Representation

#### Nominal

- Attribute values in the domain are unordered.
- Can only equality (=) compare.
- Such as gender, type of hair, etc.

**Categorical Attributes** 

### Ordinal

- Attribute values are ordered.
- Can both equality (=) and inequality (<, >) compare.
- Such as education, feel (unhappy, OK, happy), etc.

Data Representation



Interval-scaled

- Can compute only differences (addition or subtraction)
- For example, temperature measured in °C or °F.
  - If it is 20 °C on one day and 10 °C on previous day
  - We can talk about a temperature drop of 10°C.
  - We cannot say that it is twice as cold as the previous day.

### Ratio-scaled

- Can compute both differences and ratio between values,
- For example, age.
  - If Jone is 20 years old and Jim is 10 years old.
  - We can say that Jone older than Jim with 10 years.
  - We can say that Jone is twice as old as Jim.

Data Representation

### Summary of data types and scale measures

| Provides                                        | Nominal | Ordinal | Interval-scaled | Ratio-scaled |
|-------------------------------------------------|---------|---------|-----------------|--------------|
| The order of values is known                    |         | /       | /               | /            |
| "Count," aka "Frequency of<br>Distribution"     | /       | /       | /               | /            |
| Mode                                            | /       | /       | /               | /            |
| Median                                          |         | /       | /               | /            |
| Mean                                            |         |         | /               | /            |
| Can quantify the difference between each values |         |         | /               | /            |
| Can add or subtract values                      |         |         | /               | /            |
| Can multiple and divide values                  |         |         |                 | /            |
| Has "true zero"                                 |         |         |                 | /            |

https://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/



Data Representation

### **Cosmic Dataset**

|                       | name              | id     | align                 | eye        | hair       | gender                | alive      | appearances | first_appear | publisher              |
|-----------------------|-------------------|--------|-----------------------|------------|------------|-----------------------|------------|-------------|--------------|------------------------|
|                       | X <sub>1</sub>    | $X_2$  | <i>X</i> <sub>3</sub> | $X_4$      | $X_5$      | <i>X</i> <sub>6</sub> | $X_7$      | <i>X</i> 8  | <i>X</i> 9   | <i>X</i> <sub>10</sub> |
|                       | Spider-Man (Peter | Secret | Good                  | Hazel Eyes | Brown Hair | Male                  | Living     | 4043        | Aug-62       | marvel                 |
| <b>x</b> <sub>1</sub> | Parker)           |        |                       |            |            |                       | Characters |             |              |                        |
|                       | Captain America   | Public | Good                  | Blue Eyes  | White Hair | Male                  | Living     | 3360        | Mar-41       | marvel                 |
| <b>x</b> <sub>2</sub> | (Steven Rogers)   |        |                       |            |            |                       | Characters |             |              |                        |
|                       |                   |        |                       |            |            |                       |            | •••         | •••          |                        |
| **                    | Natalia Romanova  | Public | Good                  | Green Eyes | Red Hair   | Female                | Living     | 1050        | Apr-64       | marvel                 |
| $\mathbf{x}_n$        | (Earth-616)       |        |                       |            |            |                       | Characters |             |              |                        |



# Practice: What is the type of each attribute? Nominal, Ordinal, Interval-scaled or Ratio-scaled

# Encoding of Categorical Data

**Preparing Data** 

- Most of Machine learning algorithms can not handle categorical variables.
- $\rightarrow$  We convert them to numerical values.

### **Nominal variable**

### **One Hot Encoding**

- Map each category to a vector that contains 1 and 0
  - 1 presence of the feature
  - 0 absence of the feature



# Encoding of Categorical Data

**Preparing Data** 

## Ordinal

### **Ordinal Encoding**

- The encoding of variables retains the ordinal nature of the variable
- Each category is <u>assigned a value from 1 through the number of possible values</u> by <u>considering</u> the order of values.



## Encoding of Categorical Data Preparing Data

Align

Bad

Neutral

Good

### Practice

How can we encode the following categorical data?



| Hair   |
|--------|
| Black  |
| Bronze |
| Brown  |
| Gold   |
| Gray   |

# Normalization and Standardization

**Preparing Data** 

## Normalization

Scale a variable to have a values between 0 and 1

### **Min-Max Normalization:**

$$x_{normalized} = \frac{x - x_{min}}{x_{max} - x_{min}}$$





# Normalization and Standardization

**Preparing Data** 

## Standardization

Transforms data to have a mean of zero and a standard deviation of 1.

### **Z-score Standardization**

$$x_{standardized} = \frac{x - x}{S.D.}$$





## Data Quality Preparing Data



Source: http://itsadeliverything.com/wordpress/images//accuracyvs-precision.jpg



Data should be:

- Accurate and Precise
- **Complete** Does not have "unknown" or "missing" values
- Consistency Two data items in the data set contradict each other
- Valid Conform to defined business rules or constraints
- **Uniform** Using the same units of measure in all systems
- Unique Does not contain duplicates

## Data Cleaning Preparing Data

**Data Cleaning** is the process of detecting and correcting/removing corrupt or inaccurate records from a record set



# Inconsistent Datatypes

Preparing Data >> Data Cleaning

### We expect that:

Values in a particular attribute must be of a particular datatype, e.g., Boolean, numeric (integer or real), date, etc.

|                       | Values in                          | 1 – Living Characters<br>/ 0 – Deceased Characters |                       |                       |                |                |                      |                |        |                 |
|-----------------------|------------------------------------|----------------------------------------------------|-----------------------|-----------------------|----------------|----------------|----------------------|----------------|--------|-----------------|
|                       | name                               | id                                                 | appearances           | first_appear          | publisher      |                |                      |                |        |                 |
|                       | <i>X</i> <sub>1</sub>              | <i>X</i> <sub>2</sub>                              | <i>X</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> | $X_7$                | X <sub>8</sub> | X9     | X <sub>10</sub> |
| <b>x</b> <sub>1</sub> | Spider-Man (Peter<br>Parker)       | Secret                                             | Good                  | Hazel Eyes            | Brown Hair     | Male           | 1 /                  | 4043           | Aug-62 | marvel          |
| <b>x</b> <sub>2</sub> | Captain America<br>(Steven Rogers) | Public                                             | Good                  | Blue Eyes             | White Hair     | Male           | Living<br>Characters | 3360           | Mar-41 | marvel          |
|                       |                                    |                                                    |                       |                       |                |                |                      |                |        |                 |
| $\mathbf{x}_n$        | Natalia Romanova<br>(Earth-616)    | Public                                             | 1                     | Green Eyes            | Red Hair       | Female         | Living<br>Characters | 1050           | Apr-64 | marvel          |

# Inconsistent Datatypes

Preparing Data >> Data Cleaning

### How to address the Inconsistent datatypes

- Choose an appropriate datatype
- Transform values in another datatype into the selected datatype

|                       | Values in             | /0 – Deceased Characters |                       |              |                |                       |            |                       |            |                        |
|-----------------------|-----------------------|--------------------------|-----------------------|--------------|----------------|-----------------------|------------|-----------------------|------------|------------------------|
|                       | name                  | alive                    | appearances           | first_appear | publisher      |                       |            |                       |            |                        |
|                       | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub>    | <i>X</i> <sub>3</sub> | $X_4$        | X <sub>5</sub> | <i>X</i> <sub>6</sub> | $X_7$      | <i>X</i> <sub>8</sub> | <i>X</i> 9 | <i>X</i> <sub>10</sub> |
| NZ                    | Spider-Man (Peter     | Secret                   | Good                  | Hazel Eyes   | Brown Hair     | Male                  | Living     | 4043                  | Aug-62     | marvel                 |
| <b>x</b> <sub>1</sub> | Parker)               |                          |                       |              |                |                       | Characters |                       |            |                        |
|                       | Captain America       | Public                   | Good                  | Blue Eyes    | White Hair     | Male                  | Living     | 3360                  | Mar-41     | marvel                 |
| <b>x</b> <sub>2</sub> | (Steven Rogers)       |                          |                       |              |                |                       | Characters |                       |            |                        |
|                       |                       |                          |                       |              |                |                       |            | •••                   | •••        |                        |
|                       | Natalia Romanova      | Public                   | Good                  | Green Eyes   | Red Hair       | Female                | Living     | 1050                  | Apr-64     | marvel                 |
| $\mathbf{x}_n$        | (Earth-616)           |                          | Good                  |              |                |                       | Characters |                       |            |                        |

1 - Living Characters

### We expect that:

All required measures are known.

|                        | IQ<br>v        | Job performance |   |
|------------------------|----------------|-----------------|---|
|                        | Λ <sub>1</sub> | Λ2              |   |
| <b>x</b> <sub>1</sub>  | 78             | NA              |   |
| <b>x</b> <sub>2</sub>  | 84             | NA              |   |
| <b>X</b> <sub>3</sub>  | 84             | NA              |   |
| <b>x</b> <sub>4</sub>  | 85             | NA              |   |
| <b>x</b> <sub>5</sub>  | 99             | 7               | Ī |
| <b>x</b> <sub>6</sub>  | 105            | 10              |   |
| <b>X</b> <sub>7</sub>  | 105            | 11              |   |
| <b>x</b> <sub>8</sub>  | 106            | 15              |   |
| <b>x</b> 9             | 108            | 10              |   |
| <b>x</b> <sub>10</sub> | 112            | 10              |   |
| <b>x</b> <sub>11</sub> | 113            | 12              |   |
| <b>x</b> <sub>12</sub> | 115            | 14              | 1 |
| <b>x</b> <sub>13</sub> | 118            | 16              | 1 |
| <b>x</b> <sub>14</sub> | 134            | 12              |   |

Job performances of  $x_1, x_2, x_3$ and  $x_4$  are unknow. They are missing value.

### How to deal with the missing value

**Single Imputation**: Generate a single replacement value for each missing data point.

- Arithmetic Mean Imputation
  - replaces missing values with mean of available values
- Regression Imputation
  - replaces missing values with predicted scores from a regression equation
- Hot-deck Imputation
  - A collection of techniques that impute the missing values with scores from "similar" datapoints, such as nearest neighbor hot-deck and last observation carried forward.
- and etc.



- Compute the arithmetic mean of  $X_2$  from
- Replace the missing values of  $X_2$  by the



# Duplicate Data

Preparing Data >> Data Cleaning

### We expect that:

A data should appear on the dataset one time

|                         | name                  | id                    | align                 | eye        | hair       | gender         | alive          | appearances    | first_appear | publisher              |
|-------------------------|-----------------------|-----------------------|-----------------------|------------|------------|----------------|----------------|----------------|--------------|------------------------|
|                         | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | $X_4$      | X5         | X <sub>6</sub> | X <sub>7</sub> | X <sub>8</sub> | <i>X</i> 9   | <i>X</i> <sub>10</sub> |
| <b>N</b> 7              | Spider-Man (Peter     | Secret                | Good                  | Hazel Eyes | Brown Hair | Male           | Living         | 4043           | Aug-62       | marvel                 |
| <b>x</b> <sub>1</sub>   | Parker)               |                       |                       |            |            |                | Characters     |                |              |                        |
|                         | Captain America       | Public                | Good                  | Blue Eyes  | White Hair | Male           | Living         | 3360           | Mar-41       | marvel                 |
| <b>x</b> <sub>2</sub>   | (Steven Rogers)       |                       |                       |            |            |                | Characters     |                |              |                        |
|                         | Spider-Man (Peter     | Secret                | Good                  | Hazel Eyes | Black Hair | Male           | Living         | NA             | Aug-62       | marvel                 |
| <b>x</b> <sub>3</sub>   | Parker)               |                       |                       |            |            |                | Characters     |                |              |                        |
|                         |                       |                       |                       |            |            |                |                |                |              |                        |
|                         | Natalia Romanova      | Public                | Good                  | Green Eyes | Red Hair   | Female         | Living         | 1050           | Apr-64       | marvel                 |
| <b>x</b> <sub>100</sub> | (Earth-616)           |                       |                       | _          |            |                | Characters     |                |              |                        |

### We have two recodes of Spider-Man. So, the two recodes are <u>duplicate data</u> Moreover, one contradicts each other

# Duplicate Data

Preparing Data >> Data Cleaning

### How to deal with the duplicate data

- 1. Select one recode that is up-to-date and accurate
- 2. Remove the others

|                       | name              | id     | align                 | eye        | hair       | gender         | alive                 | appearances | first_appear | publisher              |
|-----------------------|-------------------|--------|-----------------------|------------|------------|----------------|-----------------------|-------------|--------------|------------------------|
|                       | X <sub>1</sub>    | $X_2$  | <i>X</i> <sub>3</sub> | X_4        | X5         | X <sub>6</sub> | <i>X</i> <sub>7</sub> | <i>X</i> 8  | <i>X</i> 9   | <i>X</i> <sub>10</sub> |
|                       | Spider-Man (Peter | Secret | Good                  | Hazel Eyes | Brown Hair | Male           | Living                | 4043        | Aug-62       | marvel                 |
| $\mathbf{x}_1$        | Parker)           | L      | L                     |            |            |                | Characters            |             |              |                        |
|                       | Captain America   | Public | Good                  | Blue Eyes  | White Hair | Male           | Living                | 3360        | Mar-41       | marvel                 |
| <b>x</b> <sub>2</sub> | (Steven Rogers)   |        |                       |            |            |                | Characters            |             |              |                        |

|              |                  |        |      |            | •••      |        | •••        |      |        |        |
|--------------|------------------|--------|------|------------|----------|--------|------------|------|--------|--------|
| .,           | Natalia Romanova | Public | Good | Green Eyes | Red Hair | Female | Living     | 1050 | Apr-64 | marvel |
| <b>X</b> 100 | (Earth-616)      |        |      |            |          |        | Characters |      |        |        |

We have two recodes of Spider-Man. So, the two recodes are duplicate data

# Practice

### Problem

- จงบอกชนิดข้อมูลของแอตทริบิวต์
  - Eye (Categorical / Numerical)
  - Hair (Categorical / Numerical)
  - Number of appearances
     (Categorical / Numerical)
- จงบอกวิธีการจัดการค่าข้อมูลสูญหาย (Missing Value) <u>ที่เหมาะสม</u>ของแอตทริบิวต์ต่อไปนี้
  - Eye
  - Hair
  - Number of appearances

| Name                | Fve   | Hair  | Number of   |
|---------------------|-------|-------|-------------|
|                     | LyC   | IIGH  | appearances |
| Captain America     | Blue  | NA    | 3360        |
| Thor                | NA    | NA    | NA          |
| Benjamin Grimm      | Blue  | NA    | 2255        |
| Reed Richards       | Brown | Brown | 2072        |
| Hulk                | Brown | NA    | 2017        |
| Scott Summers       | Brown | Brown | 1955        |
| Jonathan Storm      | Blue  | NA    | NA          |
| Robert Drake        | Brown | NA    | 1265        |
| *NA – Missing Value |       |       |             |

# References and Further Study

- Mohammed J. Zaki and Wagner Meira Jr (2014). *Data Mining and Analysis: Fundamental Concepts and Algorithm*. New York, USA: Cambridge University Press.
- Baijayanta Roy (2019). All about Categorical Variable Encoding. url: <u>https://towardsdatascience.com/all-about-categorical-variable-</u> <u>encoding-305f3361fd02</u>.
- Craig K. Enders (2010). *Applied Missing Data Analysis*. New York, USA: Guilford Press.
- Comic Characters (2015). Accessed on 05 October 2019. url: <u>https://github.com/fivethirtyeight/data/tree/master/comic-characters</u>