
CS112 2

CS112 3 CS112 4

CS112 5

unit test integration
test

validation
test

system
test

CS112 6

CS112 7

module
to be

tested

test cases

results

software
engineer

CS112 8

interface

local data structures

boundary conditions

independent paths

error handling paths

module
to be

tested

test cases

CS112 9

Module

stub stub

driver

RESULTS

interface

local data structures

boundary conditions

independent paths

error handling paths

test cases

CS112 10

CS112 11 CS112 12

top module is tested with stub

stubs are replaced one at
a time, "depth first"

as new modules are integrated,
some subset of tests is re-run

A

B

C

D E

F G

CS112 13

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

CS112 14

Top modules are

tested with stubs

Worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

CS

#include <stdio.h>

void A (int x) {

printf(%d : , x);

}

void B (int x) {

A(++x);

printf(%d : , x);

}

void main () {

B(8);

A(2);

B(10);

}

CS112 16

... our goal is to ensure that all
statements and conditions have
been executed at least once ...

CS112 17

First, we compute the cyclomatic complexity :

number of simple decisions + 1

or

number of enclosed areas + 1

In this case, V(G) = 4

CS112 18

Next, we derive the
independent paths:

Since V(G) = 4,
there are four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8
Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these
paths.

1

2

3
4

5 6

7

8

CS112 Structured Programming 19 CS112 Structured Programming 20

CS112 Structured Programming 21 CS112 22

you don't need a flow chart,
but the picture will help when
you trace program paths

count each simple logical test,
compound tests count as 2 or
more

basis path testing should be
applied to critical modules

CS112 23

Nested
Loops

Concatenated

Loops Unstructured
Loops

Simple
loop

CS112 24

test cases

results

Debugging

suspected
causes

identified
causes

corrections

regression
tests

new test
cases

Debugging: A Diagnostic Process

CS112 25

time required
to diagnose the
symptom and
determine the
cause

time required
to correct the error
and conduct
regression tests

CS112 26

Don't run off half-cocked, think about the
symptom you're seeing.

Use tools (e.g., dynamic debugger) to gain
more insight.

If at an impasse, get help from someone else.

1.

2.

3.

