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top module is tested with stub

stubs are replaced one at 
a time, "depth first"

as new modules are integrated, 
some subset of tests is re-run

A

B

C

D E

F G



CS112 13

drivers are replaced one at a 
time, "depth first"

worker modules are grouped into 
builds and integrated
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CS112 14

Top modules are

tested with stubs

Worker modules are grouped into 
builds and integrated

A

B
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D E
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cluster

CS

#include  <stdio.h>

void A (int x) {

printf( %d : , x);

}

void B (int x) {

A(++x);

printf( %d : , x);

}

void main () {

B(8);

A(2);

B(10);

}
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... our goal is to ensure that all 
statements and conditions have 
been executed at least once ...
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First, we compute the cyclomatic complexity : 

number of simple decisions + 1

or

number of enclosed areas + 1

In this case, V(G) = 4
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Next, we derive the 
independent paths:

Since V(G) = 4,
there are four paths

Path 1:  1,2,3,6,7,8
Path 2:  1,2,3,5,7,8
Path 3:  1,2,4,7,8
Path 4:  1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these  
paths.
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you don't need a flow chart, 
but the picture will help when 
you trace program paths

count each simple logical test, 
compound tests count as 2 or 
more

basis path testing should be 
applied to critical modules
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Nested 
Loops

Concatenated       

Loops Unstructured
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test cases

results

Debugging

suspected
causes

identified
causes

corrections

regression
tests

new test
cases

Debugging: A Diagnostic Process



CS112 25

time required
to diagnose the
symptom and
determine the
cause

time required
to correct the error
and conduct
regression tests
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Don't run off half-cocked, think about the 
symptom you're seeing.

Use tools (e.g., dynamic debugger) to gain 
more insight.

If at an impasse, get help from someone else.

1.

2.

3.


