w04-Lec

Mathematics and Computer Science:

Boolean Algebra

Assembled for 204111 by Areerat Trongratsameethong

Boolean Algebra

- Mathematics for Computer Scientists Janacek and Close
 - Introduction to Logical Value
 - Logical Operators

- Discrete Mathematics and Its Applications K.H.
 Rosen
 - Introduction to Boolean Algebra
 - Rules of Precedence for Boolean Operators
 - Boolean Properties
 - Boolean Expression Simplification

2

204111: Fundamentals of Computer Science

Introduction to Logical Value

- A statement has its logical value, either true (T) or false (F)
 - "it is raining": may be true or false
 - "it is sunny": may be true or false
- Many statements can be combined with and and or to be a compound statement.
 - "it is raining and it is sunny"
 - "it is raining or it is sunny"
 - The logical values of the compound statements depend on the logical value of each combined statement and what connective ("and" or "or") is used.

204111: Fundamentals of Computer Science

Logical Operators

- Three logical operators are used in Boolean
 Algebra
 - Negation (not)
 - Conjunction (and)
 - Disjunction (or)

Logical Operators [2]

- Symbolic Notation: is used to make things shorter
 - Negation denoted by —
 - "and" denoted by ∧
 - "or" denoted by ∨
- A symbolic can be also used for a statement
 - p can be used for "it is raining"

5

204111: Fundamentals of Computer Science

Logical Operators [4]

 The logical values can be represented in form of truth table as an example below.

Example

Let p = "All computer scientists are men"

Two possible logical values of p are T and F

р	$\neg p$
Т	F
F	T

Table 2.1: Truth table for negation (¬)

Logical Operators [3]

- Negation
 - The negation of a statement is false when the statement is true.
 - The negation of a statement is true when the statement is false.
- Example
 - Let p = "It is raining",
 then ¬p is "it is not raining"
 - If the logical value of p is F
 then logical value of ¬p is T

204111: Fundamentals of Computer Science

Logical Operators [5]

- **•**Conjunction ∧
- If p and q are statements, then $p \wedge q$ is read as "p and q".
 - Let
 - p = "It is green",

T T T
T F
F T F
F F F

 $p \wedge q$

- Table 2.2: Truth table for ∧
- q = "It is an apple" then
- $p \wedge q$ = "It is green and It is an apple"
- The logical value of p ∧ q depends on each logical value of p and q as shown in Table 2.2.

Logical Operators [6]

•Disjunction ∨

• If p and q are statements, then $p \lor q$ is read as "p or q".

p = "It is green",

q = "It is an apple" then

 $p \lor q$ = "It is green or It is an apple"

• The logical value of $p \lor q$ depends on each logical value of p and q as shown in Table 2.3.

 p
 q
 p ∨ q

 T
 T
 T

 T
 F
 T

 F
 T
 T

 F
 F
 F

Table 2.3: Truth table for ∨

9

Introduction to Boolean Algebra

- A Symbolic form of Aristotle's system of logic sought by George Boole (1815-1864) - The English mathematician
- Mathematical language dealing with the questions of logic
- An Investigation of the Laws of Thought (Boole 1854),
 - Theories of Logic and Probabilities
 - Mathematical Relationship Quantities Rule
 - true or false
 - 1 or 0

10

204111: Fundamentals of Computer Science

Introduction to Boolean Algebra [2]

- The mathematical system written by Boole became known as Boolean algebra.
- All Boolean quantities have two possible outcomes: 1 or 0.
- There is no such thing as "2" or "-1" or "1/2" in the Boolean world.

204111: Fundamentals of Computer Science

Introduction to Boolean Algebra [3]

- Boolean algebra as on-and-off circuits Control
- All signals are characterized as either "high" (1) or "low" (0).
- A Symbolic Analysis of Relay and Switching Circuits –
 MIT Thesis (Shannon 1938)
 - Mathematical tool for designing and analyzing digital circuits.
 - Defined the circuits in all electronic devices as 1 or 0 referring 'on' or in 'off' position.

Introduction to Boolean Algebra [4]

- Boolean algebra provides the operations and the rules for working with the set {0,1}.
- Operation for a circuit is called Boolean Function.
- Boolean Function produce output for each set of inputs.
- This function is built using Boolean expressions and operations.

Rules of Operator Precedence

• Order of Boolean Operators

- Complement (or Negation ¬) denoted by ∼
- 2. Boolean Product denoted by ∧
- 3. Boolean Sum denoted by ∨

13

low

15

204111: Fundamentals of Computer Science

Rules of Operator Precedence [2]

Example: Find the value of $1 \land 0 \lor \sim (0 \lor 1)$

$$1 \wedge 0 \vee \sim (0 \vee 1)$$

$$1 \wedge 0 \vee \sim 1$$

 $0 \lor 0$

0

Boolean Properties

- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler Circuits
 - Cheaper to build
 - Consume less power
 - Run faster than the complex circuits
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of <u>Boolean identities that help us</u> to do this.

14

204111: Fundamentals of Computer Science

Rules of Boolean Algebra

- Most Boolean identities have an AND (product) form as well as an OR (sum) form.
- We give our identities using both forms.

Identity Name	AND	OR
Identity Law	1 ∧ x = x	0 ∨ x = x
Null Law	0 ∧ x = 0	1 ∨ x = 1
Idempotent Law	x ∧ x = x	$x \lor x = x$
Inverse Law	x ∧ ~x = 0	x ∨ ~x = 1

x	1	1∧x
0	1	0
1	1	1

Truth table of 1 ∧ x

How about the others?

Note: These laws can be proved by truth table.

17

Associative Law $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ Distributive Law $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ Identity Name OR

 $x \wedge y = y \wedge x$

Rules of Boolean Algebra [2]

AND

Identity Name	OR	
Commutative Law	$x \vee y = y \vee x$	
Associative Law	$(x \lor y) \lor z = x \lor (y \lor z)$	
Distributive Law	$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$	

<u>Remark:</u> The above identities can be translated to logical <u>equivalences</u> about propositions and to identities about sets.

18

204111: Fundamentals of Computer Science

Rules of Boolean Algebra [3]

Identity Name	AND	OR
Absorption Law	$x \wedge (x \vee y) = x$	$x \lor (x \land y) = x$
De Morgan'sLaw	\sim (x \wedge y) = \sim x \vee \sim y	~(x ∨ y) = ~x ∧ ~y
Double Complement Law	~(~x) = x	

Proof – Absorption Law:

$$x \land (x \lor y) = x$$

Rewrite: $\land \Rightarrow \cdot, \lor \Rightarrow +$
 $x \cdot (x + y) = \underbrace{x \cdot x}_{x \cdot (x \cdot y)}_{x \cdot ($

Proof – Absorption Law:

$$x \lor (x \land y) = x$$

Rewrite: $\land \Rightarrow \cdot, \lor \Rightarrow +$
 $x + (x \cdot y) = (x \cdot 1) + (x \cdot y)$
 $= x \cdot (1 + y)$
 $= x \cdot 1$
 $= x$

Boolean Expression Simplification

Example 1: $(X \vee Y) \wedge (X \vee \sim Y) \wedge \sim (X \wedge \sim Z)$

1 $(x \lor y) \land (x \lor \sim y) \land \sim (x \land \sim z)$

Identity Name

Commutative Law

- $(x \lor y) \land (x \lor \sim y) \land (\sim x \lor z)$ De Morgan's Law
- 3 $(\underline{x \wedge x}) \vee (x \wedge \sim y) \vee (y \wedge x) \vee (\underline{y \wedge \sim y}) \wedge (\sim x \vee z)$ Distributive Law
- 4 $x \lor (x \land \sim y) \lor (y \land x) \lor 0 \land (\sim x \lor z)$ Idempotent and Inverse Laws
- 5 $\underline{x \lor (y \land x)} \land (\sim x \lor z)$ Absorption and Identity Laws
- $5 \quad \underline{x \wedge (\sim x \vee z)}$ Absorption Law
- 7 $(x \land \sim x) \lor (x \land z)$ Distributive Law
- 8 $0 \lor (x \land z)$ Inverse Law
- $X \wedge Z$ Identity Law

หมายเหต: ในขั้นตอนที่ 3 สามารถดำเนินการได้อีกวิธี อย่างไร?

Boolean Expression Simplification [2]

 Example 2: Find the <u>complement</u> of the Boolean expression below. (De Morgan's Law)

$$(x \land y) \lor (\sim x \land z) \lor (y \land \sim z)$$

$$\sim ((x \land y) \lor (\sim x \land z) \lor (y \land \sim z))$$

$$\sim (x \land y) \land \sim (\sim x \land z) \land \sim (y \land \sim z)$$

$$(\sim x \lor \sim y) \land (x \lor \sim z) \land (\sim y \lor z)$$

Summary

- Introduction to Logical Value
- Logical Operators
- Introduction to Boolean Algebra
- Rules of Precedence for Boolean Operators
- Boolean Properties
- Boolean Expression Simplification

21

04111: Fundamentals of Computer Science

References

- Mathematics for Computer Scientists, Janacek and Close
- Discrete Mathematics and Its Applications, K.H.
 Rosen

22