w05-Lab

Conditional Control Statements Part II

Adapted for 204111 by Areerat Trongratsameethong

204111: Fundamentals of Computer Science

Logical Operators

- More complex conditions can be created using the logical operations
 - AND (&&)
 - OR (||)
 - NOT (!)
- When the && is used with two expressions, the condition is true only if both expressions are true by themselves

Topics

- Logical Operator
- The if-else Chain
- The switch Statement
- Practice

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Logical Operators: &&

Table 4.3 The AND (&&) Operator

If expressionOne is:	And expressionTwo is:	Then, expressionOne && expressionTwo is:
true (that is, non-0)	true (that is, non-0)	true (1)
true (that is, non-0)	false (that is, 0)	false (0)
false (that is, 0)	true (that is, non-0)	false (0)
false (that is, 0)	false (that is, 0)	false (0)

p	q	p && q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

p =condition 1 (expression 1)

q =condition 2 (expression 2)

T = true

F = false

2

Logical Operators: |

Table 4.4 The OR (||) Operator

If expressionOne is:	And expressionTwo is:	Then, expressionOne expressionTwo is:
true (that is, non-0)	true (that is, non-0)	true (1)
true (that is, non-0)	false (that is, 0)	true (1)
false (that is, 0)	true (that is, non-0)	true (1)
false (that is, 0)	false (that is, 0)	false (0)

p	q	p q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

F = false

A First Book of ANSI C, Fourth Edition

.

7

204111: Fundamentals of Computer Science

Logical Operator Evaluation

Expression	Value	Interpretation
a > b	1	true
i == j a < b complete	0	false
a/b > 5 && i <= 20	1	true

Logical Operators: !

Table 4.5 The NOT (!) Operator

If expression is:	Then, !expression is:
true (that is, non-0)	false (0)
false (that is, 0)	true (1)

p	!p	p = condition (expression)
Т	F	T = true
F	Т	F = false

A First Book of ANSI C, 4th Edition

6

204111: Fundamentals of Computer Science

Example From: http://www.kosbie.net/cmu/spring-13/15-112/handouts/notes-data-and-exprs.html#Short-circuit evaluation

Logical Operator Evaluation (2)

- The evaluation feature for the && and || operators that makes the evaluation of an expression stop as soon as it is determined that an expression is false is known as short-circuit evaluation
- Example:

```
int x = 0, y = 0, z;

if ((y != 0) && ((x/y) != 0)) z = 5; // Works!

if (((x/y) != 0) && (y != 0)) z = 5; // Crashes!
```

Once again, using the "||" operator

```
int x = 0, y = 0, z;

if ((y == 0) | | ((x/y) == 0)) z = 5;  // Works!

if (((x/y) == 0) | | (y == 0)) z = 5;  // Crashes!
```

Logical Operator Evaluation (3)

 Parentheses can be used to alter the assigned operator priority

$$(6 * 3 == 36 / 2) && (13 < 3 * 3 + 4) | !(6 - 2 < 5)$$

= 0

A First Book of ANSI C, Fourth Edition

9

11

204111: Fundamentals of Computer Science

Logical Operator Precedence (2)

Expression	Equivalent Expression	Value	Interpretation
i + 2 == k - 1	(i + 2) == (k - 1)	0	false
3 * i - j < 22	((3 * i) - j) < 22	1	true
i + 2 * j > k	(i + (2 * j)) > k	1	true
k + 3 <= -j + 3 * i	(k + 3) <= ((-j) +	0	false
	(3*i))		
'a' + 1 == 'b'	('a' + 1) == 'b'	1	true
key - 1 > 'p'	(key - 1) > 'p'	0	false
key + 1 == 'n'	(key + 1) == 'n'	1	true
$25 \ge x + 4.0$	25 >= (x + 4.0)	0	false

Logical Operator Precedence

Table 4.6 C Operators Listed from Highest Precedence to Lowest Precedence

Operator	Associativity
!, unary –, ++, ––	right to left
*, /, %	left to right
+, -	left to right
<, <=, >, >=	left to right
==, !=	left to right
&&	left to right
	left to right
+=, -=, *=, /=	right to left

A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

Logical Operators: Example

- If and Logical Operator Example
 - Love6 Game: Given two integer values, first and second. It will return True if:
 - Either one is 6
 - Their sum is 6
 - Their difference is 6

How to write condition?

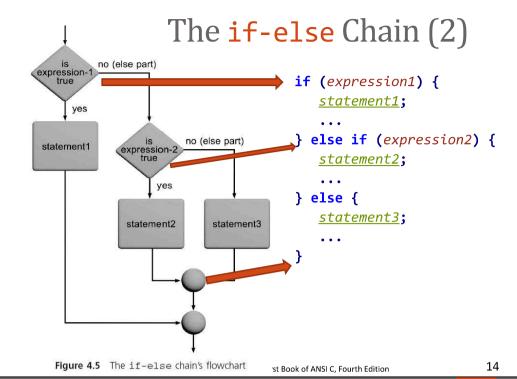
The if-else Chain

```
if (expression1)
    statement1;

else if (expression2)
    statement2;

else
    statement3;

if (expression1) {
    statement1;
    ...
} else if (expression2) {
    statement2;
    ...
} else {
    statement3;
    ...
}
```


A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

13

The if-else Chain (3)

```
#include <stdio.h>
    int main()
      char marcode;
      printf("Enter a marital code: ");
      scanf("%c", &marcode);
 9
      if (marcode == 'M')
10
        printf("\nIndividual is married.\n");
11
      else if (marcode == 'S')
12
        printf("\nIndividual is single.\n");
13
      else if (marcode == 'D')
14
        printf("\nIndividual is divorced.\n");
15
      else if (marcode == 'W')
        printf("\nIndividual is widowed.\n");
16
17
18
        printf("\nAn invalid code was entered.\n");
19
20
      return 0;
21 }
                                          A FIRST BOOK OF ANSI C, FOURTH Edition
```


204111: Fundamentals of Computer Science

The if-else Chain (4)

Monthly Sales	Income
greater than or equal to \$50,000	\$575 plus 16% of sales
less than \$50,000 but greater than or equal to \$40,000	\$550 plus 14% of sales
less than \$40,000 but greater than or equal to \$30,000	\$525 plus 12% of sales
less than \$30,000 but greater than or equal to \$20,000	\$500 plus 9% of sales
less than \$20,000 but greater than or equal to \$10,000	\$450 plus 5% of sales
less than \$10,000	\$400 plus 3% of sales

The if-else Chain (5)

```
3 int main()
     float monthlySales, income;
     printf("Enter the value of monthly sales: ");
     scanf("%f", &monthlySales);
1.0
     if (monthlySales >= 50000.00)
11
     income = 575.00 + .16 * monthlySales;
    else if (monthlySales >= 40000.00)
      income = 550.00 + .14 * monthlySales;
13
14 else if (monthlySales >= 30000.00)
15
      income = 525.00 + .12 * monthlySales;
     else if (monthlySales >= 20000.00)
      income = 500.00 + .09 * monthlySales;
1.8
     else if (monthlySales >= 10000.00)
19
      income = 450.00 + .05 * monthlySales;
20
21
      income = 400.00 + .03 * monthlySales;
22
23
     printf("The income is $%7.2f\n", income);
24
25
     return 0:
26 }
27
```

204111: Fundamentals of Computer Science

The if-else Chain (7)

```
char grade;
int score = 85;

if (score >= 90)
    grade = 'A';

else if (score >= 80)
    grade = 'B';

else if (score >= 70)
    grade = 'C';

else if (score >= 60)
    grade = 'D';

else
    grade = 'F';

printf("Score: %d, Grade: %c\n", score, grade);
```

The if-else Chain (6)

```
char grade;
int score = 85;

if (score >= 90)
    grade = 'A';

if (score >= 80)
    grade = 'B';

if (score >= 70)
    grade = 'C';

if (score >= 60)
    grade = 'D';
else
    grade = 'F';

printf("Score: %d, Grade: %c\n", score, grade);
```

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

The switch Statement

- switch statement:
 - Allows a variable to be tested for equality against a list of values.
 - Each value is called a case
 - The variable being switched on is checked for each switch case.

Reference: http://www.tutorialspoint.com/cprogramming/switch statement in c.htm

20

18

17

The switch Statement (2)

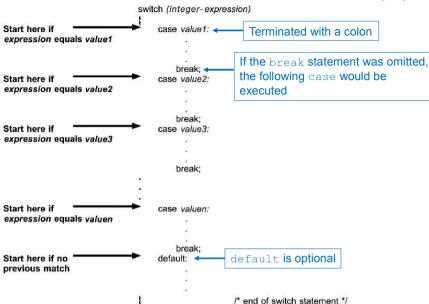


Figure 4.6 The expression determines the entry point

21

```
#include <stdio.h>
                          The switch Statement (4)
 3
    int main()
 4
      int opselect;
      float fnum, snum;
 8
      printf("Please type in two numbers: ");
9
      scanf("%f %f", &fnum, &snum);
10
      printf("Enter a select code:");
11
      printf("\n 1 for addition");
      printf("\n 2 for multiplication");
      printf("\n 3 for division : ");
14
      scanf("%d", &opselect);
15
16
      switch (opselect)
17
18
19
         printf("The sum of the numbers entered is %6.3f\n", fnum+snum);
20
         break
21
22
         printf("The product of the numbers entered is %6.3f\n", fnum*snum);
23
24
        case 3:
25
26
           printf("The first number divided by the second is %6.3f\n", fnum/snum);
27
28
          printf("Division by zero is not allowed\n");
29
         break; /* this break is optional */
30
      } /* end of switch statement */
31
     return 0;
33 } /* end of main() */
                                                                                          23
```

The switch Statement (3) true statement(s) break case value1 false true statement(s) case value2 break false case valuen statement(s) break false default 22

204111: Fundamentals of Computer Science

The switch Statement (5)

24

```
input num
                                       input num
                                       switch (num) {
if (num == 1) {
                                           case 1:
    expression1
                                                expression1
                                                . . .
                                                break;
else if (num == 2) {
    expression2
                                                expression2
                                                . . .
                                                break;
else if (num == 3) {
                                           case 3:
    expression3
                                                expression3
                                                . . .
                                                break:
} else {
                                           default:
    expression4
                                                expression4
```

Figure 4.7 The switch flowchart

```
# include <stdio.h>
                                         Reference: http://www.programiz.com/c-programming/c-switch-case-statement
int main()
                            The switch Statement (6)
    char o:
    float num1, num2;
    printf("Select an operator either + or - or * or / \n");
                                                                   ตัวอย่าง Output จากการ Run โปรแกรม
    scanf("%c",&o);
                                                                   Enter operator either + or - or * or /
    printf("Enter two operands: ");
    scanf("%f%f",&num1,&num2);
    switch(o)
                                                                   Enter two operands: 2,3 4,5
                                                                   2.3 * 4.5 = 10.3
             printf("%.1f + %.1f = %.1f", num1, num2, num1+num2);
             break;
         case '-':
             printf("%.1f - %.1f = %.1f", num1, num2, num1-num2);
         case '*':
             printf("%.1f * %.1f = %.1f", num1, num2, num1*num2);
         case '/':
             printf("%.1f / %.1f = %.1f", num1, num2, num1/num2);
         /* If operator is other than +, -, * or /, error message is shown */
             printf("Error! operator is not correct");
             break;
                           /* C program to demonstrate the working of switch...case statement */
    return 0;
                           /* C Program to create a simple calculator for addition, subtraction, multiplication and division */
```

204111: Fundamentals of Computer Science

The switch Statement (8)

```
#include <stdio.h>
                                                                   case 'A':
int main()
                                                                   case 'a':
    char c:
    int count a = 0, count b = 0, other = 0;
                                                                   is similar to
                                                                   if (c == 'A' || c == 'a')
    printf("Input a character: ");
    scanf("%c", &c);
                                      ตัวอย่าง Output จากการ Run โปรแกรม ครั้งที่ 1
    switch (c) {
                                      Input a character: A
                                      Input character is A, count a = 1, count b = 0, other = 0
         case 'A':
         case 'a':
                                       ตัวอย่าง Output จากการ Run โปรแกรม ครั้งที่ 2
              count a++;
              break;
                                      Input a character: B
         case 'B':
                                      Input character is B, count a = 0, count b = 1, other = 0
         case 'b':
              count b++;
                                       ตัวอย่าง Output จากการ Run โปรแกรม ครั้งที่ 3
              break:
         default:
                                      Input a character: c
              other++;
                                      Input character is c. count a = 0, count b = 0, other = 1
    printf("Input character is %c, count a = %d, count b = %d,
              other = %d", c, count_a, count_b, other);
    return 0;
                                                                                   27
```

```
#include <stdio.h> The switch Statement (7)
int main()
     char c;
    int capital_a = 0, letter_a = 0, other = 0;
                                          ตัวอย่าง Output จากการ Run โปรแกรม ครั้งที่ 1
    printf("Input a character:"); | Input a character: A
    scanf("%c", &c);
                                          Input character is A, capital a = 1, letter a = 1, other = 1
    switch(c) {
                                          ตัวอย่าง Output จากการ Run โปรแกรม ครั้งที่ 2
         case 'A':
                                          Input a character: a
              capital a++;
                                          Input character is a, capital a = 0, letter a = 1, other = 1
          case 'a':
              letter a++:
                                          <u>์ ตัวอย่าง Output จากการ Run</u> โปรแกรม ครั้งที่ 3
         default:
                                          Input a character: c
              other++;
                                          Input character is c, capital a = 0, letter a = 0, other = 1
    printf("Input character is %c, capital_a = %d, letter_a = %d,
              other = %d", c, capital a, letter a, other);
    return 0;
                                                                                     26
```

204111: Fundamentals of Computer Science

Practice 1

- 1. แก้ปัญหาการทอนเหรียญ (10, 5, 2, 1) กรณีให้แบงค์ 50 โดย กำหน[ื]ดให้เงินที่จ่ายต้องอ[ี]ยู่ในช่วง 1 ถึง 50 บาทเท่านั้น (ไม่มี เศษสตางค์) โดยที่การทอน ต้องทอนเหรียญเรียงตามค่ามาก ที่สดก่อน เช่น
 - ราคาซื้อ 12 บาท ต้องทอน 38 บาท
 - 10 บาท 3 เหรียญ
 - 5 บาท 1 เหรียญ
 - 2 บาท 1 เหรียญ
 - 1 บาท 1 เหรียญ
 - 1.1 เขียน Pseudocode และ Flowchart
 - 1.2 ออกแบบ Input และ Output สำหรับใช้ทดสอบโปรแกรม
 - 1.3 เขียนโปรแกรมภาษา C ตามที่ออกแบบไว้ในข้อ 1.1

Practice 2

2. แก้ปัญหาการตัดเกรด โดยมีรายละเอียดของการตัดเกรดดังแสดง ในตารางด้านล่าง ทั้งนี้คะแนนเป็นเลขทศนิยม

คะแนน	เกรด
ตั้งแต่ 80 ขึ้นไป	Α
ต่ำกว่า 80 แต่ไม่เกิน 70	В
ต่ำกว่า 70 แต่ไม่เกิน 60	С
ต่ำกว่า 60 แต่ไม่เกิน 50	D
ต่ำกว่า 50	F

2.1 เขียน Pseudocode และ Flowchart

2.2 ออกแบบ Input และ Output สำหรับใช้ทดสอบโปรแกรม

2.3 เขียนโปรแกรมภาษา C ตามที่ออกแบบไว้ในข้อ 2.1

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Practice 4.1

- ให้เขียนผังงานและรหัสเทียมของโปรแกรม เพื่อแสดงวิธีการ คำนวณการหาปีนักษัตร (Chinese Zodiac Year) จากปี ค.ศ. โดย
- ปีนักษัตร เป็นปีที่ใช้สัญลักษณ์เป็น สัตว์ 12 ตัว ประกอบด้วย Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig
- จะมีการวน แสดงตามปีเป็นรอบ ๆ รอบละ 1 ปี

Practice 3

- 3. ตรวจสอบอักขระที่ผู้ใช้นำเข้า โดยที่ตรวจสอบว่าเป็นเลข 0-9 หรือ ตัวอักษรภาษาอังกฤษ หากผู้ใช้นำเข้าตัวอักษร ให้ ตรวจสอบเพิ่มเติมว่าเป็นสระหรือไม่
 - 3.1 เขียน Pseudocode และ Flowchart
 - 3.2 ออกแบบ Input และ Output สำหรับใช้ทดสอบโปรแกรม
 - 3.3 เขียนโปรแกรมภาษา C ตามที่ออกแบบไว้ในข้อ 3.1

204111: Fundamentals of Computer Science

ตัวอย่างการเทียบปีนักษัตรจากปี ค.ศ.

ปี ค.ศ.	ปีนักษัตร
1992	Monkey (วอก)
1993	Rooster (ระกา)
1994	Dog (จอ)
1995	Pig (กุน)
1996	Rat (ชวด)
1997	Ox (ฉลู)
1998	Tiger (ขาล)
1999	Rabbit (เถาะ)
2000	Dragon (มะโรง)
2001	Snake (มะเส็ง)
2002	Horse (มะเมีย)
2003	Goat (มะแม)

Practice 4.2

- ให้เขียนผังงานและรหัสเทียมของโปรแกรม เพื่อแสดงวิธีการ คำนวนการหาธาตุประจำปี (Elements) โดย
- ธาตุประจำปีเกิด จะประกอบด้วย 5 ธาตุ ได้แก่
 Water Wood Fire Earth Metal โดยจะเวียนครั้งละ 2 ปี
- (hint: สามารถดูจากตัวหลังของ ปี ค.ศ.)
 - 0-1 = Metal
 - O 2-3 = Water
 - O 4-5 = Wood
 - 6-7 = Fire
 - 8-9 = Earth
- ดังนั้นแต่ละปีเกิดจะถูกกำหนดโดยธาตุ และนักษัตรเช่น
- มังกรทอง หนูไฟ ม้าน้ำ เป็นต้น

