Syntax vs Semantics

- Each programming language has a set of primitive constructs, a syntax, a static semantics, and semantics.
- เราจะอธิบาย concept โดยเปรียบเทียบกับภาษาที่ใช้ใน
 ชีวิตประจำวัน
- Primitive constructs
 - ในทางภาษา
 - Set of words: cat dog คน น้ำชา รถยนต์
 - ในทาง programming
 - 3.0 x y + = == operators, operands, keywords... etc

204111: Fundamentals of Computer Science

2

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

Syntax vs Semantics (3)

- Semantics หรือ Full Semantics
 - ความหมายของ expression หรือ ประโยคที่ถูก syntax และ statics semantics
 - ในทางภาษา

3

- ข้าวเย็นหมดแล้ว
- ในทาง Programming
 - อะไรคือความหมายของ expression นั้น ๆ
 - bmi = weight / height * height

//ถูก syntax และถูก static semantics //แต่ให้ผลคำนวณที่ผิด //ควรเป็น bmi = weight / (height * height)

//ความหมายกำกวม

Variables, Data Types, Expression, and Assignment

Part I

Assembled for 204111 by Areerat Trongratsameethong

204111: Fundamentals of Computer Science

204111: Fundamentals of Computer Science

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

Syntax vs Semantics (2)

- Syntax
 - ในทางภาษา
 - ไวยากรณ์:
 - เช่น น้ำฉันดื่ม << ไม่เป็นประโยค (ต้องวาง subject verb object)
 - ในทาง programming
 - 4 5 == 2
 - int y = 4 * 5;
- // incorrect syntax
 // correct syntax
- Static Semantics
 - บอกว่าประโยคที่ถูกต้องตามหลัก grammar หรือ syntax นั้น มีความหมายหรือไม่
 - ในทางภาษา
 - เช่น ปลาดาวปลูกอากาศ
 - ในทาง programming
 4 / "abc"

// อะไรคือความหมาย?????? // Syntax ถูกต้อง <literal> <operator> <literal> // แต่ไม่สื่อความหมาย

204111: Fundamentals of Computer Science

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

204111: Fundamentals of Computer Science

204111: Fundamentals of Computer Science

Syntax vs Semantics (4)

- Although syntax errors are the most common kind
 - They are the least dangerous kind and easiest to catch
- We get some help in catching static semantic errors from compiler/interpreter
- Most of the time we have to catch semantic errors ourselves

5

Back to C programming

Summary

- Syntax
 - ถูกหลักไวยากรณ์ไหม?
- Static Semantics
 - สื่อความหมายไหม?
- Semantics (หรือ Full Semantics)
 - ความหมายที่สื่อคืออะไร?
 - (ตรงตามที่ต้องการไหม?)

6

8

Identifiers

- การกำหนดชื่อในส่วนต่าง ๆของโปรแกรม เช่น ชื่อโปรแกรม, ชื่อฟังก์ชัน, และชื่อตัวแปร เป็น ต้น
- Identifiers in C consist of three types:
 - Reserved words
 - Standard identifiers
 - Programmer-created identifiers

Identifiers (2)

- Reserved words:
 - ส่วนของคำสั่งต่าง ๆที่กำหนดขึ้นโดยภาษา C
 ประกอบด้วย การกำหนดชนิดข้อมูล หรือ คำสั่งต่าง ๆ เช่น
 int, float, if เป็นต้น
- Standard identifiers:
 - ส่วนของชื่อฟังก์ชันต่าง ๆที่กำหนดขึ้นโดยภาษา C ซึ่ง
 จัดเก็บอยู่ใน Standard Library เช่น printf, scanf เป็นต้น
- Programmer-created identifiers:
 - ชื่อในส่วนต่าง ๆของโปรแกรม เช่น ชื่อโปรแกรม ชื่อ ฟังก์ชัน ชื่อตัวแปร ที่กำหนดโดยผู้พัฒนาโปรแกรม

9

204111: Fundamentals of Computer Science

A First Book of ANSI C. 4th Edition

204111: Fundamentals of Computer Science

C Reserved Words

auto	const	double	float	int	short	struct
break	continue	else	for	long	signed	switch
case	default	enum	goto	register	sizeof	typedef
char	do	extern	if	return	static	union
unsigned	void	volatile	while			

Reserved Words

- Reserved word: word that is predefined by the programming language for a special purpose and can only be used in a specified manner for its intended purpose
- Also referred to as keywords in C
- ใช้สำหรับกำหนดชนิดข้อมูล และคำสั่งต่าง ๆที่สงวนไว้ ใช้สำหรับวัตถุประสงค์ที่เฉพาะเจาะจง ประกาศโดย ภาษาคอมพิวเตอร์
- ผู้พัฒนาโปรแกรมห้ามหำ Reserved Word หรือ Keyword ไปใช้ตั้งชื่อตัวแปรของตนเอง

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Standard Identifiers

- Standard identifiers: words predefined in C
- Most of the standard identifiers are the names of functions that are provided in the C standard library
- It is good programming practice to use standard identifiers only for their intended purpose
- Standard identifiers: ส่วนใหญ่คือ ชื่อฟังก์ชันที่ ประกาศไว้ใน Standard Library ของภาษา C
- ผู้พัฒนาโปรแกรม<u>ห้าม</u>นำ ชื่อ function ที่กำหนดไว้ใน
 C Standard Library ไปใช้ตั้งชื่อส่วนต่าง ๆในโปรแกรม ของตนเอง

Example of C Standard Identifier

abs	fclose	gets	memcpy	rewind	strcpy
argc	fopen	isacii	printf	scanf	strlen
argv	free	isalpah	puts	sin	tolower
calloc	fseek	malloc	rand	strcat	toupper

204111: Fundamentals of Computer Science

A First Book of ANSI C. 4th Edition

204111: Fundamentals of Computer Science

C's identifier rules

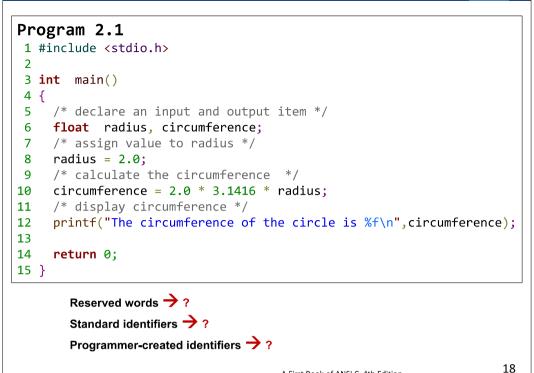
- Identifier can be any combination of letters, digits, or underscores () subject to the following rules:
 - First character must be a letter (a-zA-Z) or underscore ()
 - Only letters (a-zA-Z), digits (0-9), or underscores() may follow the initial character
 - Blank spaces are not allowed
 - Cannot be a reserved word

13

15

- **Programmer-created Identifiers**
- Programmer-created identifiers: selected by the programmer
 - Also called programmer-created names
 - Used for naming data and functions
 - Must conform to C's identifier rules.
- Programmer-created identifiers: ชื่อต่าง ๆที่ ผู้พัฒนาโปรแกรมเป็นผู้กำหนดเอง เช่น ชื่อตัวแปร และ ชื่อ function ที่ผู้พัฒนาโปรแกรมสร้างเอง เป็นต้น ต้อง กำหนดให้สอดค[ื]ล้องกับกฎการตั้งชื่อของภาษา C

A First Book of ANSI C. 4th Edition


204111: Fundamentals of Computer Science

C's identifier rules (2)

- All uppercase letters usually (but not limited to) indicate a constant.
 - #define PI 3.1412;
 - const int FAC OF SCI ID = 05;
 - const int DAYS IN WEEK = 7;
- A function name must be followed by parentheses ()
- An identifier should be descriptive:
 - degToRadians(); GOOD
- C is a case-sensitive language
 - TOTAL and total represent different identifiers.

204111: Fundamentals of Computer Science **Example of Programmer-created Identifiers** 2 • Valid C Identifier (ถูกต้อง) • invalid C Identifier (ไม่ถูกต้อง) 5 • calculateArea(); 4ab7 6 height of rectangle calculate total 7 • BMI • while 8 9 • log • height-of-rectangle 10 scanf 12 13 • Valid C Identifier but not informative (ถูกต้องแต่ไม่สื่อความหมาย) 14 • Jameji aaaa • XVX 17 A First Book of ANSI C, 4th Edition 204111: Fundamentals of Computer Science Data Type ชนิดข้อมูล • Set of values and a set of operations that can be applied to these values ชนิดของข้อมูล และการดำเนินการประเภทใดบ้างที่ กระทำกับข้อมูลในแต่ละชนิดได้ • Built-in data type: is provided as an integral part of the language; also known as **Primitive Type**

• ชนิดของข้อมูลที่เป็นส่วนหนึ่งของภาษา เราเรียกชนิด ข้อมูลเหล่านี้ว่า Primitive Type

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

204111: Fundamentals of Computer Science

Basic Data Types in C

char	a single byte, capable of holding one character in the local character set
int	an integer, typically reflecting the natural size of integers on the host machine
float	single-precision floating point
double	double-precision floating point

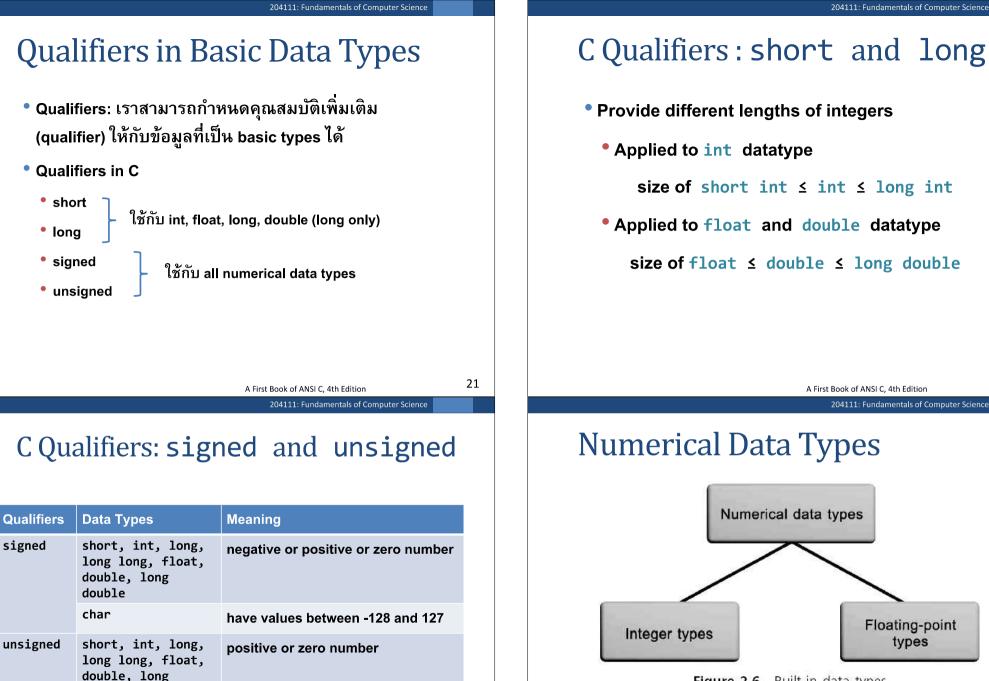


Figure 2.6 Built-in data types

Integer ≠ int

• Integer (จำนวนเต็ม) สามารถมี type อื่นได้นอกจาก int

• Floating Point \neq float

• Floating-point (จำนวนจริง) สามารถมี type อื่นได้นอกจาก float

A First Book of ANSI C, 4th Edition

24

22

have values between 0 and 255

double

char

Integral Data Types

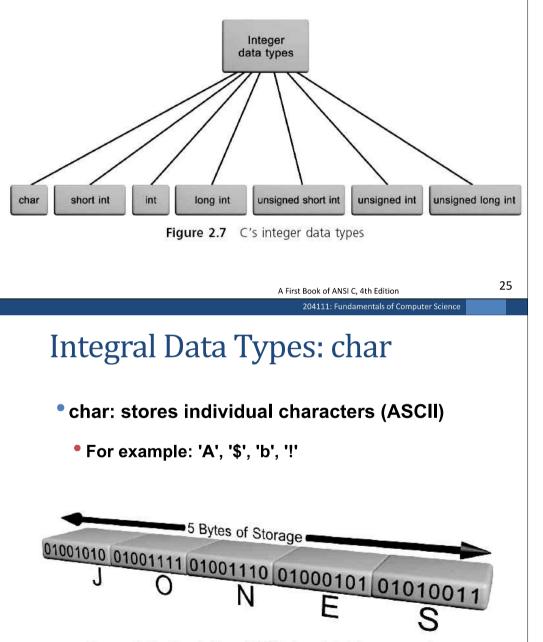


Figure 2.8 The letters JONES stored inside a computer

27

204111: Fundamentals of Computer Science

Integral Data Types: int

- int: whole numbers (integers เลขจำนวนเต็ม)
 - For example: 0, -10, 253, -26351
 - Not allowed: commas, decimal points, special symbols

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Integral Data Types: char(2)

Table 2.4 ASCII and ANSI Letter Codes

Letter	Code	Letter	Code	Letter	Code	Letter	Code
а	01100001	n	01101110	А	01000001	Ν	01001110
b	01100010	0	01101111	В	01000010	0	01001111
С	01100011	р	01110000	С	01000011	Р	01010000
d	01100100	q	01110001	D	01000100	Q	01010001
е	01100101	r	01110010	E	01000101	R	01010010
f	01100110	S	01110011	F	01000110	S	01010011
g	01100111	t	01110100	G	01000111	Т	01010100
h	01101000	u	01110101	Н	01001000	U	01010101
i	01101001	V	01110110		01001001	V	01010110
j	01101010	W	01110111	J	01001010	W	01010111
k	01101011	Х	01111000	К	01001011	Х	01011000
	01101100	у	01111001	L	01001100	Y	01011001
m	01101101	Z	01111010	Μ	01001101	Z	01011010

	204111: Fundamentals of Computer Science				
	Table 2.5 E	scape Sequences			
	Escape Sequence	Character Represented	Meaning	ASCII Code	
	∖n	Newline	Move to a new line	00001010	
	\t	Horizontal tab	Move to next horizontal tab setting	00001001	
	\v	Vertical tab	Move to next vertical tab setting	00001011	
Escape	\b	Backspace	Move back one space	00001000	
sequences	\r	Carriage return	Carriage return (moves the cursor to the start of the current line— used for overprinting)	00001101	
sequences	١f	Form feed	Issue a form feed	00001100	
$(\)$	∖a	Alert	Issue an alert (usually a bell sound)	00000111	
	~ ~ ~	Backslash	Insert a backslash character (places an actual backslash character within a string)	01011100	
F	/?	Question mark	Insert a question mark character	00111111	
Escape sequence are used to	Λ'	Single quotation	Insert a single quote character (places an inner single quote within a set of outer single quotes)	00100111	
represent certain	\"	Double guotation mark	Insert a double quote character (places an inner double quote	00100010	
special characters			within a set of outer double quotes)		
	\ <i>nnn</i>	Octal number	The number <i>nnn</i> (<i>n</i> is a digit) is to be considered an octal number	—	
	\xhhhh	Hexadecimal number	The number <i>hhhh</i> (<i>h</i> is a digit) is to be considered a hexadecimal number	—	
	\0	Null character	Insert the null character, which is defined as having the value 0	0000000	
			A First Book of ANSI C, 4th Edition	29	

Floating-Point Data Types

- A floating-point value (real number จำนวนจริง) can be the number zero or any positive or negative number that contains a decimal point
 - For example: +10.625, 5., -6.2, 3251.92, +2
 - Not allowed: commas, decimal points, special symbols

Integral Data Type Ranges

Data Type	size (byte)	Minimum	Maximum
short int	2	-32,768	32,767
unsigned short int	2	0	65,535
unsigned int	4	0	4,294,967,295
int	4	-2,147,483,648	2,147,483,647
long int	4	-2,147,483,648	2,147,483,647
signed char	1	-128	127
unsigned char	1	0	255

A First Book of ANSI C, 4th Edition

30

Floating-Point Data Types (2)

- float: single-precision number
- double: double-precision number
- Storage allocation for each data type

depends on the compiler (use sizeof())

Data Types	Size (bytes)	
float	4	represent mantissa and exponent
double	8	exponent
long double	12	$1.2345 = 12345 \times 10^{-4}$
		manticsa

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

31

mantissa

Floating-Point Data Types (3)

- float literal (ค่าคงที่ เช่น 2.3) is indicated by appending an f or F
- long double is created by appending an I or L
 - 9.234 indicates a double literal
 - 9.234f indicates a <u>float</u> literal
 - 9.234L indicates a long double literal
- สังเกตว่า floating-point literal ถ้าไม่มี suffix ใด ๆ จะมี ชนิดเป็น double
- แต่กรณี integer literal ถ้าไม่มี suffix จะมีชนิดเป็น int

33

204111: Fundamentals of Computer Science

A First Book of ANSI C. 4th Edition

204111: Fundamentals of Computer Science

Floating-Point Data Type Ranges

• การกำหนดค่า floating point เป็นไปตาม มาตรฐาน IEEE 754 ปี 1985

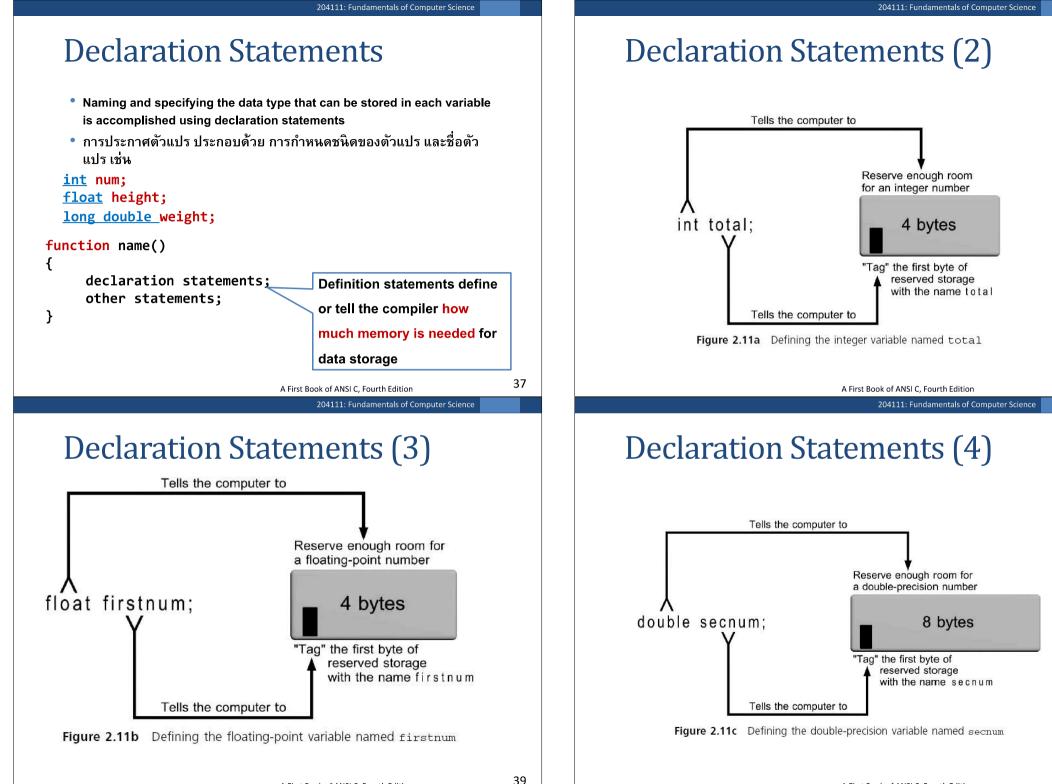
level	width	range at full precision	precision*
single precision	32 bits	±1.18 × 10 ⁻³⁸ to ±3.4 × 10 ³⁸	approx. 7 decimal digits
double precision	64 bits	±2.23 × 10 ⁻³⁰⁸ to ±1.80 × 10 ³⁰⁸	approx. 15 decimal digits

Floating-Point Data Types (4)

- Exponential Notation
 - In numerical theory, the term precision typically refers to numerical accuracy

Decimal Notation	Exponential Notation
1625.	1.625e3
63421.	6.3421e4
.00731	7.31e-3
.000625	6.25e-4

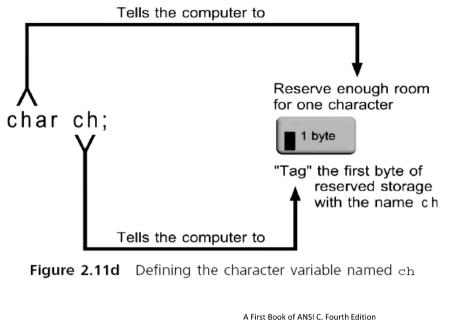
A First Book of ANSI C, 4th Edition


204111: Fundamentals of Computer Science

Variables and Declarations

Variables are names Storage for Storage for given by One Integer One Integer programmers to computer storage 45 12 • Variable name usually 1652 2548 limited to 255 Memory Addresses characters Figure 2.9 Enough storage for two integers Variable names are

35


case sensitive

A First Book of ANSI C. Fourth Edition

38

Declaration Statements (5)

204111: Fundamentals of Computer Science

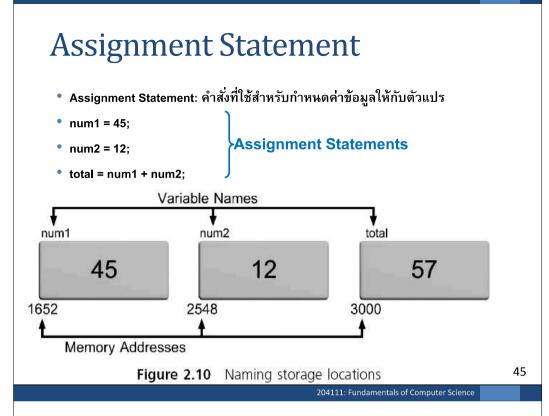
204111: Fundamentals of Computer Science

Selecting Variable Names (2)

- Use variable names that indicate what the variable corresponds to, rather than how it is computed
- Add qualifiers, such as Avg, Min, Max, and Sum to complete a variable's name where appropriate
- Use single-letter variable names, such as i, j, and k, for loop indexes

Selecting Variable Names

- Make variable names descriptive
 - day, count, weight
- Limit variable names to approximately 20 characters
- Start the variable name with a letter, rather than an underscore (_)
 - day_of_week
- In a variable name consisting of several words, capitalize the first letter of each word after the first
 - computeAreaOfRegtangle


A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Initialization

- Declaration then initialization
 - int x;
 - x = 15;
- Declaration with initialization
 - int x = 15;
- Declaration with expression initialization

• int x= 15;	//x = 15
• int y= 87.0 + 12 - x;	//y = 84
• double z = 1.253+y;	//z = 85.1253

204111: Fundamentals of Computer Science

Arithmetic Operations

Arithmetic operators: operators used for arithmetic operations:

%

- Addition
- Subtraction
- Multiplication
- Division
- Modulo
- Binary operators require two operands
- An operand can be either a literal value or an identifier that has a value associated with it

Variables and Assignment

1	#include <stdio.h></stdio.h>	
2	int main()	
∠ 3	inc main()	
4	<pre>{ float grade1; /* declare gra</pre>	del as a double variable */
5	3 3	del as a double variable */
-	•	
6	float total; /* declare tot	,
7	float average; /* declare ave	erage as a double variable */
8		You can omit the f and let the compiler conv
9	grade1 = 85.5f; 🗲	Tou can onne the Fand let the complier conv
10	grade2 = 97.0f;	the double precision value into a float value
11	total = grade1 + grade2;	when the accignment is made
12	average = total/2.0;	when the assignment is made
13	printf("The average grade is %	<pre>sf\n",average);</pre>
14		
15	return 0;	

A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

Arithmetic Operations (2)

- A simple binary arithmetic expression consists of a binary arithmetic operator connecting two literal values in the form:
 - IiteralValue operator literalValue
 - 3+7
 - 12.62 9.8
 - .08 * 12.2
 - 12.6 / 2.0
- Spaces around arithmetic operators are inserted for clarity and can be omitted without affecting the value of the expression

```
    3+5 or 3 + 5 ให้ความหมายเหมือนกันและสามารถใช้ได้ทั้งคู่
```

47

Arithmetic Operations (3)

Operation สำหรับข้อมูลชนิดตัวเลข

Table 2.3 C's Built-in Data Types

Data Type	Supplied Operations	
Integer	+, -, *, /,	
	8, =, ==, !=,	
	<=, >=, sizeof(),	
	and bit operations	
	(see Sec. 14.2)	
Floating Point	+, +, -, *, /,	
	=, ==, !=,	
	<=, >=, sizeof()	

A First Book of ANSI C, 4th Edition 204111: Fundamentals of Computer Science 49

204111: Fundamentals of Computer Science

Expression Types (2)

In a <u>mixed-mode</u> expression (expression ที่มี data type มากกว่า 1 ชนิด) the data type of each operation is determined by the following rules:

- If either operand is <u>long double</u>, convert the other to <u>long</u> <u>double</u>.
- Otherwise, if either operand is <u>double</u>, convert the other to <u>double</u>.
- Otherwise, if either operand is <u>float</u>, convert the other to <u>float</u>.

- Expression: any combination of operators and operands that can be evaluated to yield a value
- Integer expression: contains only integer operands; the result is an integer
- Floating-point expression: contains only floatingpoint operands; the result is a double-precision

A First Book of ANSI C, Fourth Edition 204111: Fundamentals of Computer Science

50

Expression Types (3)

- Otherwise, convert <u>char</u> and <u>short</u> to <u>int</u>.
- Then, if either operand is <u>long</u>, convert the other to <u>long</u>.

<u>สรุป</u>

long double > double > float > long > int > (char, short)

- Lower type ถูก promote ไปเป็น higher type เสมอ
- กรณี char และ short (char vs char, char vs short, short vs short) จะได้ผลลัพธ์เป็น int
- กรณี unsigned จะมี กฎเพิ่มเติมจากนี้

Integer Division and Modulo

• 15/2 = 7

- Integers cannot contain a fractional part
- Remainder is truncated (ปัดเศษทิ้งเสมอ) เช่น
 - 1/2 // มีค่า 0
 - 59/10 // มีค่า 5
 - -15/2 // มีค่า -7
- % is the modulo or remainder operator
 - •9%4 is 1
 - 17 % 3 is 2
 - •14 % 2 is 0

A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

204111: Fundamentals of Computer Science

53

Arithmetic Operator Summary

Table 2.9 Summary of Arithmetic Operators

Operation	Operator	Туре	Operand	Result
Addition	+	Binary	Both are integers One operand is not an integer	Integer Double- precision
Subtraction	-	Binary	Both are integers One operand is not an integer	Integer Double- precision
Multiplication	*	Binary	Both are integers One operand is not an integer	Integer Double- precision
Division	/	Binary	Both are integers One operand is not an integer	Integer Double- precision
Modulus	%	Binary	Both are integers One operand is not an integer	Integer Double- precision
Negation	В	Unary	Integer or floating point	Same as operand

- A unary operator is one that operates on a single operand, e.g., negation (-)
- The minus sign in front of a single numerical value negates (reverses the sign of) the number

A First Book of ANSI C, Fourth Edition