204111: Fundamentals of Computer Science

wO07-Lec

ata Representation
art I - Bits, Bytes and Integers

Assembled for 204111
by Kittipitch Kuptavanich

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Binary Representation

Base 2 Number Representation

® Represent 15213, as 11101101101101,

° Represent 1.20, as 1.0011001100110011[0011]...,

° Represent 1.5213,) X 10* as 1.1101101101101, X 2"

Electronic Implementation

* Easy to store with bistable elements (media fia@nusiangs 2 aa1uz)

® Reliably transmitted on noisy and inaccurate wires

0 1| 1

<—O->

3.3V
2.8V

0.5V
0.0v™—

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Bits, Bytes and Integers

| secordcie
COMPUTER SYSTEMS
A Programmer’s Perspective

Binary Representation

Bryant - O’Hallaron

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 2

Bits, Bytes and Words

Modern computers store and process 2-valued
signals called binary digits, or bits,

Most computers access bits in memory in
blocks of eight bits, or bytes (rather than
individual bits)

Information are transferred in fixed-sized
chunks of bytes known as words with the size
of either 4 bytes (32 bits) or 8 bytes (64 bits)

In this class we assume a word size of 4 bytes

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Encoding Byte Values

Q\’b\/ <
3+ (} . (\'b
° = . \2\0 QQ' N
Byte = 8 bits 5 To To000
11 [eeel
¢ Binary 00000000: to 111111112 2 |2 [o010
3 [3 [eo11
. 4 | 4 | o100
® Decimal: 019 to 25510 5|5 | o101
6 | 6 | 0110
° : 7 |7 [0111
Hexadecimal 0046 to FF4¢ e 18 1200
. 9 [9 [1e01
Base 16 number representation A |10 | 1010
B |11 [1011
Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ | C [12 | 1100
D [13 [1101
Write FA1D37B1s in C as g

* OxFA1D37B
* @xfald37b

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Boolean Algebra Revisited

Developed by George Boole in 19th Century

¢ Algebraic representation of logic

¢ Encode “True” as 1 and “False” as 0

And Or

= A&B =1 when both A=1 and B=1 = A|B = 1 when either A=1 or B=1
&[0 1 10 1
0|0 O 0|0 1
1/0 1 171 1

Not Exclusive-Or (Xor)

= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ A0 1
0|1 0|0 1
1(0 1]/1 0 ;

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Conversion Exercise

28| 27| 26| 25| 24| 23| 22| 2| 2°
256|128/ 64132 |16| 8 | 4 | 2 |1

Practice Problem 2.3: Fill in the missing entries
Decimal Binary Hexadecimal

0 0000 0000 0x00
167
62
188

0011 0111

1000 1000

1111 0011

0x52

0xAC

OxE7 Z>

6

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

General Boolean Algebras

Operate on Bit Vectors

® Operations applied bitwise

01101001 01101001
& 01010101 | 01010101

01000001 01111101

01101001
~ 01010101

00111100

~ 01010101
10101010

All of the Properties of Boolean Algebra
Apply

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science 204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden from Carnegie Mellon University's 15213 course slide by Greg Kesden

Contrast: Logic Operations in C Shift Operations

Argument x | 01100010

Contrast to Logical Operators Left Shift: X<<y
° &&,||,! ¢ Shift bit-vector x left y positions <3 00010000
* View 0 as “False” Throw away extra bits on left Log. >> 2 00011000

® Fill with 0’s on right
Right Shift: x>>y

¢ Anything nonzero as “True” Arith. >> 2 | 00011000

¢ Always return 0 or 1

o — . o
* Early termination Shift bit-vector x right y positions

® Throw away extra bits on right
Examples (char data type) * Logical shift Argument x | 10100010
1 I
. << 3 00010000
10x41 — 0x00 * Fill with 0’ on left
* 10x00 — 0x01 * Arithmetic shift Log.>> 2 | 00101000

° 110x41 — 0x01
° 0x69 && 0x55 —> 0x01
° 0x69 || 0x55 —> 0x01

° p&&*p (avoids null pointer access)

° Replicate most significant bit (MSB) on left Arith. >> 2 | 77101000

Undefined Behavior

* shift amount < 0 or = word size

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 10

204111: Fundamentals of Computer Science 204111: Fundamentals of Computer Science

Numbers Revisited Reality vs Abstraction

Number Types C Data Types (bytes) Ints are not integers
i For most computer (32-bit int
C Data Type T;/zp_li::iatl Be-6A puter (it int)
® The expression 200 * 300 * 400 * 500
Real Numbers char 1 1 1 * Yields: -884,901, 888
Rational lrrational short 2 2 2 Why??? - Overflowing
int 4 4 4
Integer oA Jong P P - For example, mu.ltiplic.:ation is associative and commutative so
whole m‘jﬁ:ﬁ‘iﬁﬁg any of the following yields -884,901, 888
b et ares L JEnE 8 8 8 (500 * 400) * (300 * 200)
} float 4 4 ((500 * 400) * 300) * 200
double 8 8 8 ((29@ * 59@) * 30@) * 400

400 * (200 * (300 * 500))
long double 8 10/12 1e0/16

pointer 4 4 8

Computer Systems: A Progldllllllt‘l S FEISPECLIVE - DIydIlL &t U ndiidion

11 12

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Reality vs Abstraction [2]

Floats are not reals
Overflowing will yield a special value: +o
Arithmetic is not associative (due to the

finite precision) printf("%f\n", (3.14+120)-1e20) ;

VS

For example: printf("%f\n",3.14+(1e20-1e20));

(3.14+1e20)-1e20 will evaluate to 0.0

3.14+(1e20-1e20) will evaluate to 3.14

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 13

204111: Fundamentals of Computer Science

Bits, Bytes and Integers

Integral Data Type Ranges

15

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Representation Limitations

Integer representations (char, short, int,
long,..)

¢ Small ranges of values

® Precise values

Floating-point representations (float,
double,...)

® Wide ranges of values

¢ Approximate values Later in the course

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 14

204111: Fundamentals of Computer Science

Range Calculation

Consider an unsigned environment (0 and positive

integer) For 4 bits

® We can represent 2* different numbers : 0000, 0001, 0010,
...... 1111

un
® The maximum is

® In signed representations, 4 e-(-1) e-15
about half of the

range will be assigned Lo @2t)

to represent the negative numbers
for w bits the range will be -2 to 2W1 —1

16

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Fill in the rest of the entries

Range Calculation Exercise

»

204111: Fundamentals of Computer Science

Integral Data Type Ranges

Bits Unsigned Unsigned Signed Signed
range value range value

2 0 to 22 -1 0 to 3

4 0 to 24 -1 0 to 15

8 0 to 28 -1 0 to 255

16

32

w 0 to2v -1

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 17

Integral Data Type Ranges [2]

C data type Minimum Maximum
char —128 127
unsigned char 0 255
short [int] —32,768 32,767
unsigned short [int] 0 65,535
int —2,147,483,648 2,147,483,647
unsigned [int] 0 4,294,967,295
long [int] —2.,147.483,648 2,147.483,647
unsigned long [int] 0 4,294,967,295
long long [int] —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Typical ranges for C integral data types o a 32-bit machine

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 18

Bits, Bytes and Integers

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

C data type Minimum Maximum
char —127 127
unsigned char 0 255
short [int] —32,767 32,767
unsigned short [int] 0 65,535
int —32,767 32,767
unsigned [int] 0 65,535
long [int] —2,147,483,647 2,147,483,647
unsigned long [int] 0 4,294,967,295
long long [int] —9,223,372,036,854,775,807 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615
Guaranteed ranges for C integral data types.
19

Encodings

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

20

Unsigned Encodings

NINTWHINITUEAIALUL unsigned UILFHIN

Tunsobdl 4 Bit

Figure 2.11

Unsigned number
examples for w =4.
When bit i in the binary
representation has value
1, it contributes 2’ to the
value. - o 0 fC

F——t——1—1+— ——t+—+— i
[0001]
[0101]

[1011]
D D

[1111]

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 21
204111: Fundamentals of Computer Science
Signed Bit
Let’s try some operation
5+2
0101 5
+ 001680 2
= 0111 7 (correct)
5-2=5+-2
0101 5
+ 10160 -2
= 1111 -7 (wrong)
23

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Representing Negatives

o @ L% aa (% .
Li’lﬁ)’lLﬂ%@lﬂﬂ%’l’)ﬁi%ﬂ'\‘ﬂm%ﬂaﬁa negative
ﬁ’wtawmuam

'aﬁm'mﬂam 1% Bit ﬂmﬂmﬂam (most
S|gn|f|cant bit: MSB) Lﬂumuammaa‘nmﬂ an
MSB (mﬂaﬂ) vl 1 uamﬂtﬂumuauau an
v 0 uam'mﬂumwmmr\ 2511381721 sign
and magnitude

A2a819 (4 Bit)
5 =010l
* -5 =1101

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 22

Two's-Complement Encodings

a Av o & = Y %

aa‘nmaammm‘lumnmumaa&aﬂamaa

#1130 operation mamﬁmmamﬂé’fttaz
v % 6 v

linaansgneas

The most common computer representation

of signed numbers is known as

two’s-complement

24

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Two's-Complement Encodings [2]

A [
Ll%ﬁﬂﬂﬁﬂ Gl%ﬂ‘itﬁ MSB il 1 hanan a2
1) % 1 [~/)
RHNILAINI IWIBAINANNL U INaU
%] . ‘::yn.z = g/ (> 1 1 [V n-1
LA bit BgINBIKRUNATINTIND -2

Bit 8% 9 AA1UINA NI 4 bit (-2° to 2°-1)

01 =|-0-2°+0-2240-2141.2° = 0404+0+1 = 1
101 = [-0-23+1-2240-2141.20 = 0444+40+1 = 5
11 = =S+ 0.224+1.2141.20 = 8404241 = -5
111 = [1.22 +1.2141.20 —8+4+2+1 = -1

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 25

Bit Pattern Comparison (2 bytes)

12,345 —12,345 53,191
Weight Bit Value Bit Value Bit Value

1 1 1 1 1 1 1
2 0 0 1 2 1 2
4 0 0 1 4 1 4
8 1 8 0 0 0 0
16 1 16 0 0 0 o | * 12345(2’s complement)
0 1 0 0 0 0 o |* -12345 (2's complement)
64 0 0 1 64 1 64 |* 53,191 (unsigned)
128 0 0 1 128 1 128
256 0 0 1 256 1 256 | Note that the latter two
512 0 0 1 512 1 512 | have identical bit
1,024 0 0 1 1,024 1 1,024 | representations.
2,048 0 0 1 2,048 1 2,048
4,096 1 4,096 0 0 0 0
8,192 1 8,192 0 0 0 0
16,384 0 0 1 16,384 1 16,384
+32,768 0 0 1 —32,768 1 32,768 < 215 ys -215 |
Total 12,345 —12,345 53,191 27

O'Hallaron

Two’'s-Complement Encodings [3]

AT INISUEAIATLLUL two's-complement
UMLA®IIWIW LNIOA 4 Bit

Figure 2.12 _23__g
Two’s-complement)

number examples for 2 =4 -
w = 4. Bit 3 serves as a 2'=2 [

sign bit, and so, when 20 _ 4 .

set to 1, it contributes

— 2% = —8 to the value. This
weighting is shown as a
leftward-pointing gray bar.

[0001]
[0101]

[1011]
o) (D
Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 26
204111: Fundamentals of Computer Science
Bits, Bytes and Integers
Signed and Unsigned Conversions, Casting
28

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Signed to Unsigned Conversions

short int v = -12345;
unsigned short uv = (unsigned short) v;
printf("v = %d, uv = %u\n", v, uv);

Output:
v = -12345, uv = 53191
WD AILNG -12345 + 215 4+ 215 = 53191

-12345 + 2*21> = 53191
-12345 + 26 = 53191

nsabudagann 2's complement negative to unsigned Tiuan 2@
(W = 37129 bit NIRAA)

3 ags ! . a
nsnbi)adann 2's complement positive Al unsigned 33 A1
N (most significant bit = 0)

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 29

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Conversion Visualized
2’s Comp. — Unsigned -

UMax

. . UMax -1
¢ Ordering Inversion

* Negative — Big Positive

/ TMax +1 Unsigned
TMax @ ® TMax Range
2’s Complement 0 @ ® o
Range 1 ._/ / -
=2
T= Twos’ compliment .

U= Unsigned B TMin

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 31

204111: Fundamentals of Computer Science

Unsigned to Signed Conversions

2W

oW1 2%1 Unsigned
2's comp to unsigned
Two’s
complement 0

_2W*1
I -
Twn3dt convert a1 unsigned

2W
[
11l#b 2's complement
wWINAAAVAAININN 2% 1
H = : w— _
Lil® convert aznanaLiln Unsigned 2 +2w T
ATWIVAL
1 4}‘1 ey 1 . w ,
AN EAAD A1 unsigned — 2 0 Two’s
complement
unsigned to 2's comp
—ow-1 30

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Signed vs. Unsigned in C

Constants

¢ By default are considered to be signed integers
¢ Unsigned if have “U” as suffix
° 0U, 4294967259U

Casting

¢ Explicit casting between signed & unsigned
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 32

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Signed vs. Unsigned in C 2]

¢ Implicit casting also occurs via assignments and

procedure calls

° tXx = ux;
cuy = ty;

Expression Evaluation

® If there is a mix of unsigned and signed in single

expression, signed values implicitly cast to

unsigned

¢ Including comparison operations <, >, ==, <=, >=

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 33

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Casting Summary

Casting Signed <= Unsigned: Basic Rules

°® Bit pattern is maintained

® But reinterpreted

® Can have unexpected effects: adding or
subtracting 2w

Expression containing signed and unsigned

int

Implicit casting

- int is cast to unsigned!! should be avoided

35

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Examples for w=32

Expression Type Evaluation
0==0U0 unsigned 1
-1<0 signed 1
-1<0U unsigned 0*
2147483647 > -2147483647-1 signed 1
21474836470 > -2147483647-1 unsigned 0*
2147483647 > (int) 2147483648U signed 1%
-1>-2 signed 1
(unsigned) -1 > -2 unsigned 1

Figure 2.18 Effects of C promotion rules. Nonintuitive cases marked by ‘*'. When
either operand of a comparison is unsigned, the other operand is implicitly cast to
unsigned. See Web Aside DATA:TMIN for why we write TMins, as —2147483647-1.

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 34

Bits, Bytes and Integers

Expanding

36

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Expanding

) - ada .
Expanding AadnItwnNN1I cast 931N integer
Ao I 1 1
NNITWIW bit uasmﬂﬂmnm'l

L%% short — int — long

¢ Unsigned: fill in leading 0's

<€ w >
¢ Signed positive: fillinleading0's x L1 | | e¢e [[]

I

agu:Clone was MSsBlalw | X' [IIee LTI ~*°° 1111
H dl AI = & 5 L >
‘Y}ﬂ bit mwumn‘nmm <€ k > € w >

Computer Systems: A Programmer’s Perspecuve - Bryant & O'Hallaron 37

Bits, Bytes and Integers

¢ Signed negative: fill in leading 1’s

° mn;sﬂ w bit to w+k bit

Truncating

39

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213; short 2 bytes

int iy = (int) y; int 4 bytes

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | @0 00 3B 6D 00000000 000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 | FF FF C4 93 11111111 11111111 11000100 10010011

Converting from smaller to larger integer data type
C automatically performs sign extension
Got expected result (both sign and unsigned)

38

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Truncating

int x = 53191;
short sx = (short) x;
int y = sx;

/* -12345 */
/* -12345 */

Tunrenaunn viniiun1s cast ians1uam bit a9
¢ Unsigned/signed: bits are truncated (ﬁﬂﬁd)

® Result reinterpreted

° Unsigned: mod operation

* Signed: similar to mod

® For small numbers yields expected behavior

Computer Systems: A Programmer’s Perspective - Bryant & O'H

Also should be avoided | 40

Bits, Bytes and Integers

Integer Arithmetic

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 41

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Unsigned Addition

Operands: w bits oLl l eee TTT1

v [OT7 eee 111
True Sum: w+1 bits YT TTT e 11T
Discard Carry: w bits UAdd,(u.v) [TTT eee TTT1]

Standard Addition Function
® Ignores carry output

Implements Modular Arithmetic
s = UAdd, (u,v) = u+v mod2v¥

43

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Integer Arithmetic

Addition
® Unsigned Addition

® Two’s complement Addition

Negation

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 42

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Visualizing wanemic Integer Addition

Add,(u, v)

Integer Addition

Integer Addition

® 4-bit integers u, v
¢ Compute true
sum Add,(u, v)

® Values increase
linearly with u
and v

® Forms planar

surface

44

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Visualizing Unsigned Addition

Overflow

Wraps Around \

UAdd,(u, v)

* If true sum 2 2%

® At most once
True Sum

2w+1
Overflow

w
:|:
0

Modular Sum

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 45

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

TAdd Overtlow

Functionality True Sum
0111..1 2W—] -+
® True sum PosOver TAdd Result
. . 0100...0 114
requires w+1 bits 2v=-1 011..1
® Drop off MSB 0000..0 0+ 000..0
® Treat remaining 10111 _ju- | 1000
bits as 2’s comp.
1000...0 —ow L1 NegOver
integer
Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 47

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Two's Complement Addition

Operands: w bits w 111 °ee

True Sum: w+1 bits

urv OTTT -

Discard Carry: w bits TAdd (u,v) LI 1] oo

TAdd and UAdd have Identical Bit-Level Behavior

¢ Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

®° Willgive s =t

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 46

204111: Fundamentals of Computer Science

Visualizing 2’'s Complement Addition

NegOver

Values \

® 4-bit two’s comp.

TAdd,(u, v)

® Range from -8 to +7
Wraps Around

® If sum = 2*"
° Becomes negative

¢ At most once

8
6
4
2
0
2
4
-6
-8

° If sum < 2"

[} mgw B
Becomes positive 2, PosOver

¢ At most once

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 48

204111: Fundamentals of Computer Science

2’s Complement Negation

NTMIw=4 (-8<x<7)

ai"m'm*qmi"m'm AN -8 (201) DL
. 1 a a 6
negation anaalndlwadbadans -X=0-X

o { _2w—1’

w —X,

x=—2w-l

x> —2w-1

Negation 209 2v 9gHAN 201 (A3 1kLaY) b
NIUNWHALUL two’s complement

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 49

Bit-level Representation

of 2’s-Complement Negation [2]

Method2: Let k be the position of the rightmost 1,

we complement each bit to the left of bit position k
(W1 1 622140 WAINAL bit LAWIEN T8V 1 GITW)

[1100] —4 [0100] 4
[1000] -8 [1000] -8
[0101] 5 Qo] -5
[0111] 7[00 -7

51

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

Bit-level Representation | umaon:.

of 2’s-Complement Negation

X 1 =)
LWIVLN&I n1IUIN 1 138N

Method1: complement the bits and then increment

(NAY bit WaWIN 1)

In C -xand ~x + 1 will give identical results.

X ~X incr(~x)
[0101] 5 [1010] —6 [i1011] -5
[0111] 7 [1000] -8 [l001] -7
[1100] -4 [0011] 3 [0100] 4
[0000] 0 [1111] -1 [0000] 0
[1000] -8 [0111] 7 [1000] -8

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 50

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Why Should I Use Unsigned?

Don’t Use Just Because Number is

Nonnegative

¢ Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];

® Can be very subtle

#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= @; i-= DELTA)

52

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Why Should I Use Unsigned? |2]

Do Use When Performing Modular

Arithmetic
® Multiprecision arithmetic
Do Use When Using Bits to Represent Sets

® Logical right shift, no sign extension

Right shifting in C
unsigned int will result in a logical shift
signed int will result in an arithmetic shift

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 53

Conclusion [2]

Understanding these encodings at the bit
level, as well as understanding the
mathematical characteristics of the
arithmetic operations, is important for
writing programs that operate correctly over

the full range of numeric values.

55

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

| |
Conclusion

Computers encode information as bits,
generally organized as sequences of bytes.

Different encodings are used for representing
integers, real numbers, and character strings.

Different models of computers use different
conventions for encoding numbers and for
ordering the bytes within multi-byte data.

Most machines use two’s-complement encoding
of integers.

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 54

Conversion Exercise (Ans.)

Practice Problem 2.3: Fill in the missing entries

Decimal Binary Hexadecimal

0 0000 0000 0x00
167 10100111 OXA7
62 00111110 ox3E
188 1011 1100 @xBC
55 0011 0111 ox37
136 1000 1000 0x88
243 1111 0011 OxF3
82 0101 0010 0x52
172 1010 1100 0xAC
231 1110 0111 0xE7

56

Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Fill in the rest of the entries ;
Bits Unsigned unsigned Signed Signed
range value range value
2 0 to 22 -1 0 to 3 -2 to 2!-1 -2 to 1
4 0 to 24 -1 0 to 15 -23 to 23-1 -8 to 7
8 0 to 28 -1 @ to 255 -27 to 27-1 -128 to 127
-32768 to
16 _ -915 15_
16 0 to 2 1 @ to 65535 215 to 2'°-1 32767
0 to -2147483648 to -
32 _ -931 31_
32 | @to 2" -1 | 4594967295 2% to 2%-1 1 5147483647
w 9 to 2v -1 -2w-1 to 2v-1-1
Computer Systems: A Programmer’s Perspective - Bryant & O'Hallaron 57

