w05-Lec

Mathematics and Computer Science:

Boolean Algebra

Assembled for 204111 by Areerat Trongratsameethong

204111: Fundamentals of Computer Science

Introduction to Logical Value

- A statement has its logical value, either true (T) or false (F)
 - "it is raining": may be true or false
 - "it is sunny": may be true or false
- Many statements can be combined with and and or to be a compound statement.
 - "it is raining and it is sunny"
 - "it is raining or it is sunny"

The logical values of the compound statements depend on the logical value of each combined statement and what connective ("and" or "or") is used.

Boolean Algebra

- Mathematics for Computer Scientists Janacek and Close
 - Introduction to Logical Value
 - Logical Operators

- Discrete Mathematics and Its Applications K.H. Rosen
 - Introduction to Boolean Algebra
 - Rules of Precedence for Boolean Operators
 - Boolean Properties
 - Boolean Expression Simplification

204111: Fundamentals of Computer Science

Logical Operators

- Three logical operators are used in Boolean
 Algebra
 - Negation (not)
 - Conjunction (and)
 - Disjunction (or)

Logical Operators (2)

- Symbolic Notation: is used to make things shorter
 - Negation denoted by —
 - "and" denoted by
 - "or" denoted by ∨
- A symbolic can be also used for a statement
 - p can be used for "it is raining"

204111: Fundamentals of Computer Science

Logical Operators (4)

 The logical values can be represented in form of truth table as an example below.

Example

Let p = "All computer scientists are men"

Two possible logical values of p are T and F

р	¬ p
Т	F
F	Т

Table 2.1: Truth table for negation (¬)

Logical Operators (3)

- Negation
 - The negation of a statement is false when the statement is true.
 - The negation of a statement is true when the statement is false.
- Example
 - Let p = "It is raining",
 then ¬p is "it is not raining"
 - If the logical value of p is F
 then logical value of ¬p is T

204111: Fundamentals of Computer Science

Logical Operators (5)

- Conjunction ∧
- If p and q are statements, then $p \wedge q$ is read as "p and q".
 - Let
 - *p* = "It is green",
 - q = "It is an apple" then

 $p \wedge q$ = "It is green and It is an apple"

• The logical value of $p \wedge q$ depends on each logical value of p and q as shown in Table 2.2.

Table 2.2: Truth table for ∧

Logical Operators (3)

- Disjunction V
- If p and q are statements, then $p \vee q$ is read as "p or q".
 - Let
 - p = "It is green",
 - q = "It is an apple" then

 $p \vee q$ = "It is green or It is an apple"

• The logical value of $p \vee q$ depends on each logical value of p and q as shown in Table 2.3.

Т Т F

Table 2.3: Truth table for ∨

204111: Fundamentals of Computer Science

Introduction to Boolean Algebra (2)

- The mathematical system written by Boole became known as Boolean algebra.
- All Boolean quantities have two possible outcomes: 1 or 0.
- There is no such thing as "2" or "-1" or "1/2" in the Boolean world.

Introduction to Boolean Algebra

- A Symbolic form of Aristotle's system of logic sought by George Boole (1815-1864) - The English mathematician
- Mathematical language dealing with the questions of logic
- An Investigation of the Laws of Thought (Boole 1854).
 - Theories of Logic and Probabilities
 - Mathematical Relationship Quantities Rule
 - true or false
 - 1 or 0

204111: Fundamentals of Computer Science

Introduction to Boolean Algebra (3)

- Boolean algebra as on-and-off circuits Control
- All signals are characterized as either "high" (1) or "low" (0).
- A Symbolic Analysis of Relay and Switching **Circuits –MIT Thesis (Shannon 1938)**
 - Mathematical tool for designing and analyzing digital circuits.
 - Defined the circuits in all electronic devices as 1 or 0 referring 'on' or in 'off' position.

Introduction to Boolean Algebra (4)

- Boolean algebra provides the operations and the rules for working with the set {0,1}.
- Operation for a circuit is called Boolean Function.
- Boolean Function produce output for each set of inputs.
- This function is built using Boolean expressions and operations.

13

204111: Fundamentals of Computer Science

Rules of Precedence for Boolean Operators (2)

Example: Find the value of $1 \land 0 \lor \sim (0 \lor 1)$

$$1 \wedge 0 \vee \sim (0 \vee 1)$$

 $1 \wedge 0 \vee \underline{-1}$

 $1 \wedge 0 \vee 0$

0 \ 0

0

Rules of Precedence for Boolean Operators

- Order of Boolean Operators
 - 1. Complement (or Negation →) denoted by ~
 - 2. Boolean Product denoted by ∧
 - 3. Boolean Sum denoted by ∨

Note: Unless parentheses () are used, operations in the parentheses are done first.

14

204111: Fundamentals of Computer Science

Boolean Properties

- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler Circuits
 - Cheaper to build
 - Consume less power
 - Run faster than the complex circuits
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of <u>Boolean identities that help us</u> to do this.

Rules of Boolean Algebra

- Most Boolean identities have an AND (product) form as well as an OR (sum) form.
- We give our identities using both forms.

Identity Name	AND	OR
Identity Law	1 ∧ x = x	0 ∨ x = x
Null Law	0 ∧ x = 0	1 ∨ x = 1
Idempotent Law	x ∧ x = x	$x \lor x = x$
Inverse Law	x ∧ ~x = 0	x ∨ ~x = 1

x	1	1 ^ x
0	1	0
1	1	1

Truth table of 1 ∧ x

How about the others?

Note: These laws can be proved by truth table.

17

19

204111: Fundamentals of Computer Science

Boolean Properties (3)

Identity Name	AND	OR
Absorption Law	$x \wedge (x \vee y) = x$	$x \lor (x \land y) = x$
Demorgan's Law	~(x ∧ y) = ~x ∨ ~y	~(x ∨ y) = ~x ∧ ~y
Double Complement Law	~(~x) = x	

Proof – Absorption Law: $x \wedge (x \vee y) = x$ Rewrite: $\wedge \rightarrow \cdot, \vee \rightarrow +$

 $x \cdot (x + y) = \underline{x \cdot x} + (x \cdot y)$ $= x + (x \cdot y)$

> $= (x \cdot 1) + (x \cdot y)$ $= x \cdot (1 + y)$

 $= x \cdot 1$

= x

Proof – Absorption Law:

 $x \lor (x \land y) = x$

Rewrite: $\wedge \rightarrow \cdot, \vee \rightarrow +$

 $x + (x \cdot y) = (x \cdot 1) + (x \cdot y)$ $= x \cdot (1 + y)$

 $= x \cdot 1$

= x

Rules of Boolean Algebra (2)

Identity Name	AND
Commutative Law	$x \wedge y = y \wedge x$
Associative Law	$(x \wedge y) \wedge z = x \wedge (y \wedge z)$
Distributive Law	$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$

Identity Name	OR
Commutative Law	$x \lor y = y \lor x$
Associative Law	$(x \lor y) \lor z = x \lor (y \lor z)$
Distributive Law	$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

Remark: The above identities can be translated to logical equivalences about propositions and to identities about sets.

204111: Fundamentals of Computer Science

Boolean Expression Simplification

Example 1: $(x \lor y) \land (x \lor \sim y) \land \sim (x \land \sim z)$

 $(x \lor y) \land (x \lor \sim y) \land \sim (x \land \sim z)$

DeMorgan's Law

 $(x \lor y) \land (x \lor \sim y) \land (\sim x \lor z)$

Distributive Law

 $(x \land x) \lor (x \land \neg y) \lor (y \land x) \lor (y \land \neg y) \land (\neg x \lor z)$

Idempotent and Inverse Laws

 $\times \vee (x \wedge \sim y) \vee (y \wedge x) \vee 0 \wedge (\sim x \vee z)$

Absorption and Identity Laws

 $x \lor (y \land x) \land (\neg x \lor z)$

Absorption Law

 $\times \wedge (\sim x \vee z)$

Distributive Law

 $(x \land \neg x) \lor (x \land z)$

Inverse Law

 $0 \lor (x \land z)$

Identity Law

 $x \wedge z$

Boolean Expression Simplification (2)

 Example 2: Find the <u>complement</u> of the Boolean expression below. (Demorgan's Law)

$$(x \wedge y) \vee (\neg x \wedge z) \vee (y \wedge \neg z)$$

$$\underline{\neg((x \wedge y) \vee (\neg x \wedge z) \vee (y \wedge \neg z))}$$

$$\underline{\neg(x \wedge y) \wedge \neg(\neg x \wedge z) \wedge \neg(y \wedge \neg z)}$$

$$(\neg x \vee \neg y) \wedge (x \vee \neg z) \wedge (\neg y \vee z)$$

21

204111: Fundamentals of Computer Science

Reference

- Mathematics for Computer Scientists, Janacek and Close
- Discrete Mathematics and Its Applications, K.H. Rosen

Summary

- Introduction to Logical Value
- Logical Operators
- Introduction to Boolean Algebra
- Rules of Precedence for Boolean Operators
- Boolean Properties
- Boolean Expression Simplification