204111: Fundamentals of Computer Science

Variables, Data Types,
Expression, and Assignment

Part]

Assembled for 204111
by Areerat Trongratsameethong

204111: Fundamentals of Computer Science

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

Syntax vs Semantics (2)

¢ Syntax
* Tunmenim

4
Taennsal:
o g ianaa << ldiduis:loa (§89919 subject verb object)
° 1%%’10 programming
4 5 == 2
inty = 4 * 5;
¢ Static Semantics

// incorrect syntax
// correct syntax

* yaniuscluaNanAasmIunan grammar #3a syntax i
Faunaguse la
* Tunenim
° 1w daraignaime

* Tune programming
4 / "abC"

Il Syntax gnéfaa <literal> <operator> <literal>

I walsidanannnang

204111: Fundamentals of Computer Science

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

Syntax vs Semantics

¢ Each programming language has a set of primitive
constructs, a syntax, a static semantics, and semantics.

* 157920518 concept TaglSaudisununs sl
A0 92310
® Primitive constructs
* Tunenm
Set of words: cat dog aib wi"nﬂ INLWA

* Tune programming

3.0 x y + = == operators, operands, keywords... etc

2

204111: Fundamentals of Computer Science

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

Syntax vs Semantics (3)

°* Semantics %38 Full Semantics

* @NNNBVDY expression W3a Uszlaafign syntax uas

statics semantics

* Tun1r9n1en

[~ °
1NTURNAUED [IAMNRNIYAININ

* Tunne Programming

arlsRaAuna18V09 expression 1 9
/lan syntax LLazgn static semantics

bmi = weight / height * height

19 ¥ ° Aa
//LLmi‘ﬂNaﬂ']%'JmﬂNﬂ

&
11A313)% bmi = weight / (height * height)

204111: Fundamentals of Computer Science

Ref: Introduction to Computation and Programming Using Python, revised and expanded edition By John V Guttag

Syntax vs Semantics (4)

® Although syntax errors are the most

common kind

® They are the least dangerous kind and easiest
to catch

°We get some help in catching static
semantic errors from compiler/interpreter

® Most of the time we have to catch semantic
errors ourselves

5

204111: Fundamentals of Computer Science

Back to C programming

204111: Fundamentals of Computer Science

¢ Syntax
* anuanlignnblna?
¢ Static Semantics

* FaANNRNIY IRN?

. L= .
® Semantics (#1989 Full Semantics)
* ananaNnangafaazls?
(AT9IANNABINT 1N?)

6

[dentifi

* pstnwadaludinans gualdsunsa wu
salisunsy, Baweraw, uazdanunds 1
A

¢ Identifiers in C consist of three types:
® Reserved words
¢ Standard identifiers

® Programmer-created identifiers

A First Book of ANSI C, 4th Edition

[dentifiers)

® Reserved words:
°* §INVDIATHIANI qﬁﬁnw%mﬁ%‘[ﬂﬂmm C

[}
Q 1

ﬂs”ﬂﬂﬂﬂ')ﬂ ﬂ'liﬂ'lﬁ%ﬂ‘lf%ﬂ?laﬂa Wiﬁl ﬂ']ﬁ\‘](ﬂ']\? 9 L‘lﬁrb
int, float, if Huan

¢ Standard identifiers:

1 2 fa 1 A o & 2
° muwaa%aﬁan%uma ‘]Ylﬂ’lﬂ%ﬂ"ﬂ%‘[ﬂﬂﬂ’]‘]sl"l C o4
[<3 1] [
famnuag‘lu Standard Library 124 printf, scanf wan

® Programmer-created identifiers:

. ?jaiuaqumqa guadlisunsa win Falusunsa 2o
Worisw Haeauils Arvwalasgwamilysunsa

A First Book of ANSI C, 4th Edition 9

C Reserved Words

auto const double float int short struct

break | continue else for long signed switch

case default enum goto register | sizeof | typedef

char do extern if return static union
unsigned void volatile | while

11

A First Book of ANSI C, 4th Edition

Reserved Words

® Reserved word: word that is predefined by the
programming language for a special purpose and
can only be used in a specified manner for its
intended purpose

¢ Also referred to as keywords in C

* lfdmsuimuazhadays wazadaans gissanly
‘lﬁmmmmnﬂswmﬂ‘nmwmlmww ilsenalag
AMBIADNNADS

° Nwwmfﬂmnmm&lm Reserved Word %38
Keyword T1fl#0azasuilsaasawias

A First Book of ANSI C, 4th Edition 10

Standard Identifiers

¢ Standard identifiers: words predefined in C

® Most of the standard identifiers are the names of
functions that are provided in the C standard library

° It is good programming practice to use standard
identifiers only for their intended purpose

¢ Standard identifiers: d’m‘lmy:ﬁa BaWenzui
sen1@l)lw Standard Library 289111 C
* gmwldsunsaiia o ?ja function Nivwa 151w

C Standard Library Tl#asaadinens 9luwlilsunss
PDIAWLDY

12

A First Book of ANSI C, 4th Edition

Example of C Standard Identifier

abs fclose gets memcpy rewind strcpy
argc fopen isacii printf scanf strlen
argv free isalpah puts sin tolower
calloc fseek malloc rand strcat | toupper

204111: Fundamentals of Computer Science

A First Book of ANSI C, 4th Edition 13

C’s identifier rules

¢ Identifier can be any combination of letters,
digits, or underscores (_) subject to the
following rules:

® First character must be a letter (a-zA-Z) or
underscore (_)

® Only letters (a-zA-Z), digits (0-9), or underscores(_)
may follow the initial character

® Blank spaces are not allowed

® Cannot be a reserved word

15

A First Book of ANSI C, 4th Edition

Programmer-created Identifiers

° Programmer-created identifiers: selected by the

programmer
¢ Also called programmer-created names
® Used for naming data and functions

® Must conform to C’s identifier rules

® Programmer-created identifiers: %a(ﬁha 6]‘?;
wwmmfﬂmnsmﬂuwm‘numLaa B Faduds uay
m function nwwm%ﬁfﬂmnsuasflataa \nan o
mw%ﬂ‘lﬁaaﬂﬂaaanungmsmmwaamm C

A First Book of ANSI C, 4th Edition 14

C’s identifier rules (2)

¢ All uppercase letters usually (but not limited to)
indicate a constant.

* ##define PI 3.1412;
* const int FAC_OF_SCI_ID = ©5;
* const int DAYS_IN WEEK = 7;

¢ A function name must be followed by parentheses ()

¢ An identifier should be descriptive:

* degToRadians(); ¢===m GOOD
* easy, duh, justDoIt 4= NOT GOOD

® C is a case-sensitive language

* TOTAL and total represent different identifiers.

16

A First Book of ANSI C, 4th Edition

Example of Programmer-created

Identifiers

® Valid C Identifier (Qﬂ(ﬁqfaa) ¢ invalid C Identifier (1aign€fao)

* calculateArea(); * 4ab7

* height_of_rectangle * calculate total

* BMI * while

* log * height-of-rectangle
* scanf

* Valid C Identifier but not informative (gn@asua li§aanavany)

* Jameji
* aaaa
° XyX

A First Book of ANSI C, 4th Edition 17

204111: Fundamentals of Computer Science

a L

THAVDYR

¢ Set of values and a set of operations that can be
applied to these values
* sRavasdaya uazmsaniwnsdszanladiem

nizrinudeyaluuaazsiala

¢ Built-in data type: is provided as an integral part

of the language; also known as Primitive Type

. ﬁﬁﬂwaaﬁ’agaﬁLflmhuﬁﬁawaamm LSSYNBWA
VaYALUEIHI Primitive Type

19

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Program 2.1
1 #include <stdio.h>
2

int main()
{
/* declare an input and output item */
float radius, circumference;
/* assign value to radius */
radius = 2.09;
9 /* calculate the circumference */
10 circumference = 2.0 * 3.1416 * radius;
11 /* display circumference */
12 printf("The circumference of the circle is %f\n",circumference);

coONOYUVT AW

14 return 9;

Reserved words 9 ?
Standard identifiers 9 ?

Programmer-created identifiers 22

A First Book of ANSI C, 4th Edition 18

Basic Data Typesin C

char a single byte, capable of holding one character in the local
character set
int an integer, typically reflecting the natural size of integers on the

host machine

float single-precision floating point

double double-precision floating point

20

A First Book of ANSI C, 4th Edition

Qualifiers in Basic Data Types

* Qualifiers: 19EATANMABAAHINLALNALAN
%) { &
(qualifier) 1ﬁﬂuﬁa§aﬁlﬂ% basic types b6

® Qualifiers in C

¢ short .
lanu int, float, long, double (long only)
¢ long
¢ signed o
g :|» 1%nw all numerical data types
¢ unsigned

A First Book of ANSI C, 4th Edition 21

C Qualifiers: signed and unsigned

signed short, int, long, pegative or positive or zero number
long long, float,
double, long
double
char have values between -128 and 127
unsigned short, int, long, positive or zero number

long long, float,
double, long
double

char have values between 0 and 255

23

A First Book of ANSI C, 4th Edition

C Qualifiers: short and long

® Provide different lengths of integers
® Applied to int datatype
size of short int < int < long int
® Applied to float and double datatype

size of float < double < long double

A First Book of ANSI C, 4th Edition 22

Numerical Data Types

Numerical data types ‘

Floating-point

J types

Integer types

Figure 2.6 Built-in data types
° Integer # int
® Integer (5’1%’3%&5&) GREREREY type 5:%1ﬁuanﬁl’m int
° Floating Point # float
® Floating-point (5’1%’3%3‘%\1) #3190 type 5%16qfuanmﬂ float

24

A First Book of ANSI C, 4th Edition

Integral Data Types

l_un‘signe’d long int

short int LIm' H long int .|uns_ig_ned short int

Li_:harJ

unsigned int

Figure 2.7 C's integer data types

A First Book of ANSI C, 4th Edition 25

Integral Data Types: char

® char: stores individual characters (ASCII)

® For example: 'A', '$', 'b", "'

Figure 2.8 The letters JONES stored inside a computer

27

A First Book of ANSI C, 4th Edition

Integral Data Types: int

o [
¢ int: whole numbers (integers - LRAINWBINLAN)
® For example: 0, -10, 253, -26351

® Not allowed: commas, decimal points, special
symbols

Negative Integers Positive Integers
S B W I e | i

i % U
4 7 6 5 4 3 2 41 0 1 2 3 & 5 6 7

A First Book of ANSI C, 4th Edition 26

Integral Data Types: char(2)

Table 2.4 ASCIl and ANSI Letter Codes

Letter | Code Letter | Code Letter | Code Letter | Code

a 01100001 | n 01101110 | A 01000001 | N 01001110
b 01100010 | o 01101111 | B 01000010 | © 01001111
C 01100011 | p 01110000 | C 01000011 | P 01010000
d 01100100 | g 01110001 | D 01000100 | Q 01010001
e 01100101 | r 01110010 | E 01000101 | R 01010010
f 01100110 | s 01110011 | F 01000110 | S 01010011
g 01100111 | t 01110100 | G 01000111 | T 01010100
h 01101000 | u 01110101 | H 01001000 | U 01010101
i 01101001 | v 01110110 | I 01001001 | V 01010110
j 01101010 | w 01110111 | J 01001010 | W 01010111
k 01101011 | x 01111000 | K 01001011 | X 01011000
| 01101100 |y 01111001 | L 01001100 | Y 01011001
m 01101101 | z 01111010 | M 01001101 | Z 01011010

28

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science 204111: Fundamentals of Computer Science

Table 2.5 Escape Sequences

Escape Character Meaning ASCII Code
Sequence | Represented I t D t I R
\n Newline Move o a new line 00001010 n e ra a a e an eS
\t Horizontal tab Move to next horizontal tab 00001001
setting
v Vertical tab Move to next vertical tab setting 00001011 D T iz
E \b Backspace Move back one space 00001000 ata ype i (byte)
Scape \r Carriage return Carriage return {moves the cursor 00001101
to the start of the current line— short int -32,768 32,767
used for overprinting)
SequenCeS \f Form feed Issue a form feed 00001100 . d h
\a Alert Issue an alert (usually a bell 00000111 un51gne short 2 0 65,535
sound) int
A\ Backslash Insert a backslash character 01011100
(places an actual backslash . .
character within a string) unsigned int 4 0 4,294,967,295
E \? Question mark Insert a question mark character 00111111
scape sequence v’ Single quotation | Insert a single quote character 00100111 q
(places an inner single quote int 4 '2,147,483,648 2,147,483,647
are used to within a set of outer single
quotes) .
represent certain o Double Insert a double quote character 00100010 long int 4 -2,147,483,648 2,147,483,647
quotation mark (places an inner double quote
i within a set of outer double .
special characters quotes) signed char 1 -128 127
\nnn Octal number The number nnn (n is a digit) is to | —
be considered an octal number .
\xhhhh Hexadecimal The number hhhh (h is a digit) is — unSlgned char‘ 1 0 255
number to be considered a hexadecimal
number
\O Null character Insert the null character, which is 00000000
defined as having the value O

A First Book of ANSI C, 4th Edition 29 A First Book of ANSI C, 4th Edition 30

Floating-Point Data Types Floating-Point Data Types (2)

° A floating-point value (real number - 5’1%’3%%%0) ¢ float: single-precision number

can be the number zero or any positive or * double: double-precision number

negative number that contains a decimal point * Storage allocation for each data type

° . i
For example: +10.625, 5., -6.2, 3251.92, +2 depends on the compiler (use sizeof())

Data Types Size (bytes)

® Not allowed: commas, decimal points, special

symbols float 4 represent mantissa and exponent
double 8 e)firlint

-4
long double 12 1.2345 = 12345x%x10
w

mantissa

31 32

A First Book of ANSI C, 4th Edition A First Book of ANSI C, 4th Edition

Floating-Point Data Types (3)

* float literal (A1AIN 1B 2.3) is indicated by appending
anforF

® long double is created by appending an | or L
® 9.234 indicates a double literal

® 9.234f indicates a float literal

® 9.234L indicates a long double literal

°* §OLNA2N floating-point literal A bA suffix e) el
%At double

1 1 a [~
° LANIN integer literal A1 bNA suffix J=ATHALTN int

A First Book of ANSI C, 4th Edition 33

Floating-Point Data Type Ranges

° ATNRBAAT floating point Wuldans
N1A331% IEEE 754 1] 1985

level width range at full precision

single precision |32 bits 21,18 x 10738 tp 3.4 x 1038

precision*
approx. 7 decimal digits

double precision 64 bits +2.23 x 107308 tp +1.80 = 10308 |approx. 15 decimal digits

Reference: http://en.wikipedia.org/wiki/IEEE_754-1985#Range_and_precision 35

Floating-Point Data Types (4)

® Exponential Notation

® In numerical theory, the term precision typically

refers to numerical accuracy

Decimal Notation Exponential Notation

1625. 1.625e3
63421. 6.3421e4
.00731 7.31e-3
.000625 6.25e-4

A First Book of ANSI C, 4th Edition 34

204111: Fundamentals of Computer Science

Variables and Declarations

® Variables are names

Storage for Storage for

given by

One Integer One Integer
programmers to ~ — = = = -
computer storage 45 12

¢ Variable name usually ;-5 2548
limited to 255 t i

Memory Addresses

characters

Figure 2.9 Enough storage for two integers
® Variable names are

case sensitive

36

A First Book of ANSI C, Fourth Edition

Declaration Statements Declaration Statements (2)

® Naming and specifying the data type that can be stored in each variable
is accomplished using declaration statements Tells the computer to

° nsdszniaaands Usznauaig N1INIRBAZHAYaIN S Laztan

uils 15w]
Reserve enough room

int num; . for an integer number

float height; A

long double weight; int total 4 bytes
function name()

{ "Tag" the first byte of
declaration statements; Definition statements define Iosomed SR
other statements; .

} or tell the compiler how Tells the computer to

much memory is needed for Figure 2.11a Defining the integer variable named total
data storage
A First Book of ANSI C, Fourth Edition 37 A First Book of ANSI C, Fourth Edition 38
Tells the computer to
Tells the computer to
Reserve enough room for
a floating-point number
Reserve enough room for
a double-precision humber
float firstnum; 4 bytes

double secnum; 8 bytes

"Tag" the first byte of —
reserved storage "Tag" the ﬁrstd bytte of
. . reserved siorage
with the name firstnum eith THE e, 56 T
Tells the computer to Tells the computer to

Figure 2.11c Defining the double-precision variable named secnum

Figure 2.11b Defining the floating-point variable named firstnum

40

A First Book of ANSI C, Fourth Edition 39 A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

Declaration Statements (5)

Tells the computer to

\J

A Reserve enough room
for one character
char ch;

\/ |!1by4e

"Tag" the first byte of
A reserved storage
with the name ch

Tells the computer to

Figure 2.11d Defining the character variable named ch

41

A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

Selecting Variable Names (2)

¢ Use variable names that indicate what the
variable corresponds to, rather than how it is

computed

¢ Add qualifiers, such as Avg, Min, Max, and Sum

to complete a variable’s name where appropriate

¢ Use single-letter variable names, such as i, j, and

k, for loop indexes

43

A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

Selecting Variable Names

® Make variable names descriptive

* day, count, weight
® Limit variable names to approximately 20
characters

¢ Start the variable name with a letter, rather than

an underscore (_)
* day_of_week

° In a variable name consisting of several words,
capitalize the first letter of each word after the

first
* computeAreaOfRegtangle

A First Book of ANSI C, 4th Edition

Initialization

® Declaration then initialization

* int x;
* X = 15;

® Declaration with initialization
e int x = 15;

® Declaration with expression initialization

¢ int x= 15; //x =15
e int y= 87.0 + 12 - x; //y = 84
* double z = 1.253+y; //z = 85.1253

A First Book of ANSI C, Fourth Edition

42

204111: Fundamentals of Computer Science

44

204111: Fundamentals of Computer Science

Assignment Statement

. o o A o e J 1Y ¥
¢ Assignment Statement: maan’lﬁmmumwuﬂmwaaga’lﬁnumuﬂs

° num1 =45;

Assignment Statements

num2 = 12;
¢ total = num1 + num2;

Variable Names

1 v

nu m _num2 total

45 12 of

1652 2548 3000
t i)

Memory Addresses

Figure 2.10 Naming storage locations 45

Arithmetic Operations

¢ Arithmetic operators: operators used for arithmetic

operations:

® Addition +
¢ Subtraction -

® Multiplication *

® Division /

® Modulo %

¢ Binary operators require two operands

¢ An operand can be either a literal value or an
identifier that has a value associated with it

47

A First Book of ANSI C, Fourth Edition

Variables and Assignment

a Program 2.7

1 f#include <stdioc.h>

2 int main()

3 {

4 float gradel; /* declare gradel as a double wvariable */

5 float gradeZ; /* declare grade2 as a double variable */

3} float total; /* declare total as a double variable */

7 float average; /* declare average as a double wariable */

8 . .

o gradel = 85 .5f; e You can omit the f and let the compiler convert
10 gradez = 97.0f; «————— | the double precision value into a float value
1L fotal = gradel + grade2; when the assignment is made
12 average = total/2.0;

13 printf ("The average grade is %f\n",average);
14

15 return 0;

16 }

A First Book of ANSI C, Fourth Edition 46

Arithmetic Operations (2)

¢ A simple binary arithmetic expression consists of a
binary arithmetic operator connecting two literal values in
the form:

¢ literalValue operator literalValue
3+7
12.62 - 9.8
.08 *12.2
12.6 /2.0

¢ Spaces around arithmetic operators are inserted for
clarity and can be omitted without affecting the value of
the expression

¥ &

* 3+50r3+5 lRanansngmilannwuazaansalzalanog

48

A First Book of ANSI C, Fourth Edition

204111: Fundamentals of Computer Science

Arithmetic Operations (3)
* Operation 1% TLVBNATHAGIAL

Table 2.3 C’'s Built-in Data Types

Data Type Supplied Operations
Integer 4, = *, /.

%, =, ==, =,

<=, »=, sizeof(),
and bit operations
(see Sec. 14.2)

+, 0+, = F

Floating Point

== 1=

r i’
<=, »=, gizeof()

49

A First Book of ANSI C, 4th Edition

Expression Types (2)

In a mixed-mode expression (expression 14 data type
NN 1 %ﬁﬂ) the data type of each operation is
determined by the following rules:

® If either operand is long double, convert the other to long

double.

® Otherwise, if either operand is double, convert the other to

double.

® Otherwise, if either operand is float, convert the other to
float.

Reference: The C programming Language - K & R 51

204111: Fundamentals of Computer Science

Expression Types

® Expression: any combination of operators and

operands that can be evaluated to yield a value

®Integer expression: contains only integer operands;

the result is an integer

® Floating-point expression: contains only floating-

point operands; the result is a double-precision

A First Book of ANSI C, Fourth Edition 50

Expression Types (3)

¢ Otherwise, convert char and short to int.
® Then, if either operand is long, convert the other to long.

RN
LR
long double > double > float > long > int > (char, short)

¢ Lower type 9N promote Tuhiln higher type Lddd

* N30 char LAY short (char vs char, char vs short, short vs

[V o ¢ @
short) EIANARNSLIM int

® N3t unsigned TN NHLNNLANIING

Reference: The C programming Language - K & R 52

Integer Division and Modulo

°15/12=7
°® Integers cannot contain a fractional part

® Remainder is truncated (ﬂmﬁuﬁamua) LT

1/2 I1§@10
59/10 I1§@a1 5
-15/2 I §an -7

® % is the modulo or remainder operator
*9 % 4 is 1
17 % 3 is 2
*14 % 2 is O

A First Book of ANSI C, Fourth Edition 53

Arithmetic Operator Summary

Table 2.9 Summary of Arithmetic Operators

Operation Qperator Type Operand Result

Addition + Binary Both are integers Integer Double-
One operand is not precision
an integer

Subtraction - Binary Both are integers Integer Double-
One operand is not precision
an integer

Multiplication | * Binary Both are integers Integer Double-
One operand is not precision
an integer

Division / Binary Both are integers Integer Double-
One operand is not precision
an integer

Modulus % Binary Both are integers Integer Double-
One operand is not precision
an integer

Negation B Unary Integer or Same as operand
floating point

A First Book of ANSI C, 4th Edition 55

204111: Fundamentals of Computer Science

Negation

¢ A unary operator is one that operates on a

single operand, e.g., negation (-)

® The minus sign in front of a single numerical
value negates (reverses the sign of) the

number

A First Book of ANSI C, Fourth Edition 54

