204111: Fundamentals of Computer Science 204111: Fundamentals of Computer Science

Topics

¢ Assignment
w03-Lab ¢
- [J

Variables, Data Types,
" . [J
Expression, and Assignment
[J
Part 11 .
([]
Assembled for 204111
by Areerat Trongratsameethong °
A First Book of ANSI C, 4th Edition 2
Assignment Assignment (2)
® The general syntax for an assignment °® length = 25; is read “length is assigned the value
variable = operand; ¢ bytes (i)
ytes (in
® The operand to the right of the assignment
operator (=) can be a constant, a variable, or an int length; 25
expression length = 25;)
-
® The equal sign in C does not have the same length
meaning as an equal sign in algebra
A First Book of ANSI C, 4th Edition 3 A First Book of ANSI C, 4th Edition 4

Assignment (3)

® Subsequent assignment statements can be used

to change the value assigned to a variable
length = 3.7;
length

6.28; i imaansanwuuaadaaalusilinuaudsla

® The operand to the right of the equal sign in an

assignment statement can be a variable or any

valid C expression

sum = 3 + 7;
product = .05 * 14.6;

A First Book of ANSI C, 4th Edition 5

Assignment (4)

®Variables used in the expression to the right
of the = must be initialized if the result is to

make sense

int x;
int y = 20 * x;

°INVALID Assignment
* amount + 1892 = 1000 + 10 * 5;

204111: Fundamentals of Computer Science

Assignment with Expression

sum =

¥

Calculate 3+7

3+ 7; product =

¥

Calculate .05 *14.6

.05 * 14.6;

Store 10 to sum Store 0.73 to product

The value of the expression to the right of = is computed first and then

the calculated value is stored in the variable to the left of =

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Assignment (5)

‘g Program 3.1

#include <stdio.h>
int main()
{
float length, width, area;

If width and length were not initialized, the computer
length = 27.2;
width = 13.8;
area = length * width;

} ———> | uses the value that happens to occupy that memory space

previously (compiler would probably issue a warning)

printf("The length of the rectangle is %f£", length);
printf("\nThe width of the rectangle is %f", width);
printf("\nThe area of the rectangle is %f", area);

return 0;

A First Book of ANSI C, 4th Edition

A First Book of ANSI C, 4th Edition

Assignment (6)

1 #include <stdio.h>
2
3 int main()

Two major steps for: sum = sum + 10;

Line 6: sum=7?

. Line 8: sum =?
5 int sum;

|6 sum = 25; |

7 printf(“\nThe number stored in sum is %d.””, sum);

|8 sum = sum + 10;|

9 printf(“ \nThe number now stored in sum is %d.”, sum);
10 return 0;

11 }
Step 1. : sum
25 Old value w] 3 New value
) s overwriten TP _ ‘T< 9 s stored
—_—

Figure 3.1 The
integer 25 is stored

i evn Figure 3.2 sum = sup + 10- cauces 3 new 3 lue to be stored in sum| 9

Topics

® Type Conversions

11

A First Book of ANSI C, 4th Edition

Assignment Variations

¢ Assignment expressions like
sum = sum + 25
can be written using the following operators:
+= = *= = Y%=
Example:

sum = sum + 10; // is equivalent to below statement

sum += 10;

price price * rate; // is equivalent to below statement

price *= rate;

price *= rate + 1; // is equivalent to below statement

price = price * (rate + 1);
A First Book of ANSI C, 4th Edition 10

Implicit Type Conversions

¢ Data type conversions take place across assignment operators
double result;
result = 4; // integer literal 4 is converted to 4.0
® The automatic conversion across an assignment operator is
called an implicit type conversion (implicit casting)
int answer;
answer = 2.764; |/ double literal 2.764 is converted to 2

¢ Here the implicit conversion is from a higher precision to a lower

precision data type; the compiler will issue a warning

12

A First Book of ANSI C, 4th Edition

Explicit Type Conversions Topics

® The operator used to force the type conversion of a value

to another type is the cast operator with the form °

(dataType) expression

° .
® where dataType is the desired data type of the Accumulating

expression following the cast ¢

® This is called explicit type conversion (explicit casting) e

double sum; °
printf("converting to int %d", ((int) sum));

([]

® If sum is declared as double sum; °

* (int) sum is the integer value determined by truncating

sum’s fractional part
A First Book of ANSI C, 4th Edition 13 A First Book of ANSI C, 4th Edition 14

204111: Fundamentals of Computer Science 204111: Fundamentals of Computer Science

ACCumulatlng Statement Value in sum Accumulatlng (2) Statement Value in sum
sum = 0; 0 sum = 0; 0
, sum = sum + 96; 96 sum = sum + 96; 96
° Accumulating: N3N sum = sum + 70; [166 #include <stdio.h> sum = sum + 70; | 166
" e . sum = sum + 85; | 251 int main() { sum = sum + 85; | 251
bt R L sun = sum + 60; | 311 sun = sum + 60; | 311
TuU3as 9 1w Twnyal int sum;
sum = 0;
(;fa\‘jﬂ'ﬁﬂ'](shna‘squ A previously stored number, if it has not printf ("\nThe value of sum is initially set to %d.", sum);
A4 o been initialized to a specific and known sum = sum + 96;
(sum) L‘W’él%’lv[ﬂ%'l lue. is f v called b | printf("\n sum is now %d.", sum);
value, is frequently called a garbage value sum = sum + 70;

ﬂl'llﬂaﬂ printf ("\n sum is now %d.", sum);
sum = sum + 85;
* The first statement initializes sum to 0 Printf("\n sum is now %¥d.", sum);

sum = sum + 60;
. . . printf("\n The final sum is %d.", sum);
® This removes any previously stored value in sum that ’

would invalidate the final total } return 0;

15 16

A First Book of ANSI C, 4th Edition A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science
I .

Operator Precedence

A First Book of ANSI C, 4th Edition 17

Arithmetic Operator Precedence

¢ Two binary arithmetic operator symbols must never be placed
side by side
2 + +5; // invalid
5+ -2; // valid
Parentheses may be used to form groupings

® Expressions in parentheses are evaluated first
(4 +5) *3%2; // The (4 +5) is performed first
® Parentheses may be enclosed by other parentheses

2% ((4+5) *¥3)); // The (4 + 5) is performed first
// The 9 * 3 is performed second
¢ Parentheses cannot be used to indicate multiplication

2% (4 +5)(3 - 2); // invalid

19

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Reference: http://www.difranco.net/compsci/C_Operator_Precedence_Table.htm

Operator Precedence

Precedence | Operator Description Associativity
high 1 [¢] Parentheses Left-to-right
++ - Suffix/postfix increment and decrement
++ -- | Prefix increment and decrement Right-to-left
2 + = Unary plus and minus Arithmetic
(type) | Type cast
3 *1 % | Multiplication, division, and remainder Left-to-right
+ = Addition and subtraction
<< >> | Bitwise left shift and right shift
6 <<= For relational operators < and < respectively }
> >= For relational operators > and 2 respectively Logical
7 ==1= | For relational = and # respectively
8 & Bitwise AND
9 & Bitwise XOR (exclusive or) Bitwise
10 | Bitwise OR (inclusive or)
11 8& | Logical AND } Logical
12 Il Logical OR
13 ? Ternary conditional Right-to-Left
14 = Simple assignment
low 15 , Comma A First Book of ANSI C, ath Ediffip-right 18

Arithmetic Operator Precedence (2)
® Three basic levels of precedence:

¢ All negations are done first

¢ Multiplication, division, and modulo operations are

computed next; expressions containing more than
one of these operators are evaluated from left to
right as each operator is encountered

¢ Addition and subtraction are computed last;

expressions containing more than one addition or
subtraction are evaluated from left to right as each
operator is encountered

20

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Arithmetic Operator Precedence (3)

(8 +5) * (7% (2*4)) ="2?
¢ Example:

8 +5 *%7 %2 * 4 =

8 + 35 % 2 * 4 =
8 + 1 * 4 =
8 + 4 = 12

A First Book of ANSI C, 4th Edition 21

204111: Fundamentals of Computer Science

Assignment Operator

Multiple Assignments

¢ = has the lowest precedence of all the binary and unary
arithmetic operators

® Multiple assignments are possible in the same statement
a=b=c=25;
All = operators have the same precedence
Operator has right-to-left associativity
® ¢ =25;// step 1
®b=c;/l step 2
®a=bh;/lstep 3

A First Book of ANSI C, 4th Edition 23

204111: Fundamentals of Computer Science

Arithmetic Operator Precedence (4)

(8 +5) * (7% (2 *4)) =2
L
13 * (7% 8
|

—~
]

N
]

13 * 91

A First Book of ANSI C, 4th Edition 22

204111: Fundamentals of Computer Science

Topics

[}
® Increment and Decrement Operators
[]
[]

A First Book of ANSI C, 4th Edition 24

204111: Fundamentals of Computer Science 204111: Fundamentals of Computer Science

Increment and Decrement Operators Increment and Decrement Operators (2)
¢ A counting statement is very similar to the
accumulating statement Table 3.2 Examples of the Increment Operator
variable = variable + fixedNumber, Expression Alternative
Examples: i=1+1 i++ and ++1i
i=i+1: n=n=+1 n++ and ++n
- g count = count + 1 count++ and ++count
m=m+ 2;
® Increment operator (++): Table 3.3 Examples of the Decrement Operator
variable = variable + 1; Expression Alternative
® can be replaced by i=1i-1 i-- and --i
variable++; //or n=n-1 n-- and --n
++variable; count = count - 1 | count-- and --count
A First Book of ANSI C, 4th Edition 25 A First Book of ANSI C, 4th Edition 26
Increment and Decrement Operators (3) Increment and Decrement Operators (4)
1 #include <stdio.h>
2
i ?”t main() ® When the ++ operator appears before a variable,
5 int ;
o e counts it is called a prefix increment operator; when it
7 count = 0; H P H
8 printf("\nThe initial value of count is %d. ",count); appears after a variable, itis called pOSthX
9 count++; increment operator
16 printf("\n count is now %d.", count);
11 count++; = ++n, // Prefix increment
12 printf("\n count is now %d.", count); =n + 1; // increment n first (step 1)
13 count++; // assign n's value to k (step 2)
14 printf("\n count is now %d.", count);
15 count++;
16 printf("\n count is now %d.", count); = n++; // Postfix increment
17 The initial value of count is @. ; . ,
18 return 0; count is now 1. < // assign n's value to k (step 1)
19 } count is now 2. = n + 1; // and then increment n (step 2)
count is now 3.
A First BOOKSGHANEY CAh Edition - A First Book of ANSI C, 4th Edition 28

204111: Fundamentals of Computer Science

Increment and Decrement Operators (5)

® Prefix decrement operator: the expression

k = --n;
¢ first decrements the value of n by 1 before assigning the value of
nto k
n=n-1; // decrement n first (step 1)

k

n; // assign n's value to k (step 2)

¢ Postfix decrement operator: the expression
k = n--;
¢ first assigns the current value of n to k and then reduces the
value of n by 1

n; // assign n's value to k (step 1)

n - 1; // and then decrement n (step 2)
A First Book of ANSI C, 4th Edition 29

The printf() Function

¢ printf() formats data and sends it to the standard system
display device (i.e., the monitor)

¢ Inputting data or messages to a function is called passing
data (or is called passing arguments) to the function
¢ printf("Hello there world!");

¢ Syntax (1'3 El'msniwmn'nsn): set of rules for formulating
statements that are “grammatically correct” for the
language

° npsudauaiy qﬁtﬁmﬁ'aaﬁ'nmstﬁﬂmgﬂﬁﬁ{a Tasfims
\Bangaaideans dasdonligndas uazaenadas fu
wan Nl BINHNIEH 9

31

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science
[opi

printf() Function

A First Book of ANSI C, 4th Edition 30

The printf() Function (2)

int printf(char *format, argl, arg2, ...);
® Arguments

® First argument of printf() must be a string

¢ A string that includes a conversion control

sequence, such as %d, is termed a control string
Conversion control sequences are also called

conversion specifications and format specifiers

Table 2.8 Conversion Control Sequences

Sequence Meaning
2d Display an integer as a decimal (hase 10) number
%c Display a character
$f Display the floating-point number as a decimal number with six digits
after the decimal point (pad With Z6ts,okoEas A Yhition 32

The printf() Function (3)

Reference: The ANSI C Programming Language text book
Table 7.1 Basic Printf Conversions

[Character]| Argument type; Printed As |

g, i |lint: decimal number |

[o [lint: unsigned octal number (without a leading zero) |

X, % int: unsigned hexadecimal number (without a leading 0x or 0x), using abcdef or
aBcrEF for 10,15.

[a [lint: unsigned decimal number |

c int: single character

char *: print characters from the string until a '\ o' or the number of characters

S . . .
given by the precision.

double: [-]1m.dddddd. where the number of d's is given by the precision (default

§ 6).
e E double: [-] m.dddda’_dew—xv or [-]m.dddddde+/-xx, where the number of d's
is given by the precision (default 6).
double: use $e or E if the exponent is less than -4 or greater than or equal to the
e precision: otherwise use s£. Trailing zeros and a trailing decimal point are not
printed.
[[[void *: pointer (implementation-dependent representation). |
% |no argument is converted: print a % |

AFirst Book of ANSI'C, 4th Edition 33

The printf() Function (5)

#include <stdio.h>

int main()

{
printf("%f plus %f is equal to %f\n", 15.0, 2.0, 15.0+2.0);
printf("%f minus %f is equal to %f\n", 15.0, 2.0, 15.0-2.0);
printf("%f times %f is equal to %f\n", 15.0, 2.0, 15.0*%2.0);
printf("%f divided by %f is equal to %f\n", 15.0, 2.0, 15.0/2.0);
return 9;

}

15.888080 plus 2.8BAAEBA i= equal to 17.800RE0
15.88808A minus 2.A8B0AA is equal to 13.AA0A8A
15.00808A times 2.ABBAAA iz equal to 38.8AAAAA
15.888080 divided by 2.880000 iz equal to ?7.500080

35

A First Book of ANSI C, 4th Edition

The printf() Function (4)

¢ Control Sequence
¢ printf() replaces a format specifier in its control string with

the value of the next argument

printf("The total of 6 and 15 is %d", 6 + 15);
¢ Output: The total of 6 and 15 is 21

printf ("The sum of %f and %f is %f", 12.2,
15.754, 12.2 + 15.754);

¢ Output: The sum of 12.200000 and 15.754000 is 27.954000

34

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

The printf() Function (6)

Program 2.6

1 #include <stdio.h>

2 int main()

3 {

4 printf ("\nThe first letter of the alphabet is %c¢", 'a');

5 printf ("\nThe decimal code for this letter is %d4", 'a');

6 printf ("\nThe code for an uppercase %c is %d\n", 'A', 'A');
7

8

9

return 0;

36

A First Book of ANSI C, 4th Edition

Format Modifiers

¢ Left justification: printf("|%-10d|",59);

produces the display [SOANAANAAA |

¢ Explicit sign display: printf("|%+10d|",59);

produces the display | ANAAAAAASY |

® Format modifiers may be combined

® %-+10d would cause an integer number to both:

display its sign and
be left-justified in a field width of 10 spaces
The order of the format modifiers is not critical

® %+-10d is the same

A First Book of ANSI C, 4th Edition 37
204111: Fundamentals of Computer Science
Format Modifiers (3)
g Program 3.13 ‘a Program 3.14
1 #include <stdio.h= 1 #include <stdio.h>
2 int main() 2 int main()
3 3 {
4 printf("\n%d", 6); 4 printf ("\n%34", 6);
5 printf ("\n%d", 18); 5 printf ("\n%34", 18);
6 printf ("\n%d", 124); 6 printf ("\n%34d", 124);
7 printf("\n---");] printf ("\n---");
8 printf ("\n%d\n", 6+18+124); 8 printf ("\n%3d\n", 6+18+124);
9 9
10 return 0; 10 return 0;
11 3 12N)
Output
J P $ Output
6 6
18 18 Field Width Specifier
124 124
148 A First g'élb% f ANSI C, 4th Edition 39

Format Modifiers (2)

Table 3.6 Effect of Field Width Specifiers

Specifier Number Display Comments

32d 3 A3 Number fits in field

%2d 43 43 Number fits in field

%2d 143 143 Field width ignored

%2d 2.3 Compiler Floating-point number in an
dependent integer field

%5.2f 2.366 A2.37 Field of 5 with 2 decimal digits

%5.2f 42.3 42.30 Number fits in field

%5.2f 142.364 142.36 Field width ignored but

fractional specifier is used

%5.2f 142 Compiler Integer in a floating-point field

dependent

38

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

Case Study: Temperature Conversion

® Write and test a program that correctly converts
the Fahrenheit temperature of 75 degrees into its
Celsius equivalent.

Program 2.9 Celsius = 5/9(Fahrenheit - 32)

&

/* convert a Fahrenheit temperature te Celsius */

#include <stdio.h>
int main()
{

float celsius;

float fahrenheit = 75; /* declaration and initialization */

o =1 Oh oo W B

9 celsius = 5.0/9.0 * (fahrenheit - 32.0);

10 printf ("The Celsius equivalent of %5.2f degrees Fahrenheit\n",
11 fahrenheit) ;
12 printf (" is %5.2f degrees\n", celsius);

14 return 0;

15
) A First Book of ANSI C, 4th Edition 40

204111: Fundamentals of Computer Science
I .

¢ scanf() Function

41

A First Book of ANSI C, 4th Edition

204111: Fundamentals of Computer Science

The scanf () Function (2)

Practice 4: WINAANSVAINITUINGILAY 1 D9 100 n =100
. . a=1
#.tlncluqe <stdio.h> b = 100
int main() |

{

int a, b, n, sum; sum=n(a+b)/2

printf("n = "); scanf("%d", &n);
printf("a = "); scanf("%d", &a); m
printf("b = "); scanf("%d", &b);

sum = n*(a+b)/2;
printf("%d + %d + ... + %d = %d\n",
a, a+l, b, sum);

return 9; Output-1 Output-2
} n =100 n=98
a=1 a=3
b =100 b =100
1+2 4.+ 100 5:3030ns d abiddhidh* - + 100 = 5047

The scanf() Function

¢ scanf() is used to enter data into a program while it

is executing; the value is stored in a variable

¢ It requires a control string as the first argument inside

the function name parentheses, typically consists of
conversion control sequences only

¢ scanf() requires that a list of variable addresses (&)

follow the control string
¢ scanf("%d", &num1); // d for integer

¢ scanf("%f", &numz2); // f for floating point

o @ A A Il [
BaNgwa: scanf() Soanansaldsusonasiaan 9laanidu character, double iindw ooz
—_— au

1 =3 a s
namdsluwunSeudaly 42
i ition

The scanf() Function (3)

¢ scanf() can be used to enter many values
scanf ("%f %f",&numl,&num2); //"%f%f" is the same
® A space can affect what the value being entered is when
scanf() is expecting a character data type
scanf("%c%c%c" ,&ch1,&ch2,&ch3);

¢ Stores the next three characters typed in the variables ch1,
ch2, and ch3;

if you type x y z, then:

¢ x is stored in ch1,

¢ a blank is stored in ch2, and
¢ yis stored in ch3

44

A First Book of ANSI C, 4th Edition

The scanf() Function (4) Caution: The Phantom Newline Character

° o [+) [+) n .
scanf("%c %c %c",&chl,&ch2,&ch3); causes scanf() to output
look for three characters, each character separated by exactly Proaram 3.10 Type in a char-a.cter-: m)
g 0 The keystroke just accepted is 109
one space Type in another character: The
1 f#include <stdio.n> keystroke just accepted is 10
. . . . 2 int i 1
® When using scanf(), if a double-precision number is to be s J
A 4 h fkey, skey; . .
entered, you must use the %lf conversion control sequence . T e 10 is an Enter Key (New Line)
6 printf('Type in a character: "}; (from keyboard buffer)
¢ scanf() does not test the data type of the values being entered 7 scanf("%c’, &fkey):
8 printf {"The keystroke just accepted is %d", fkey);
9 intf {"\nT i th h ter: ");
® Inscanf("%d %f", &huml, &num2), Lo seant(tser, tekewr. T
11 printf ("The keystroke just accepted is %d\n", skey);
® if user enters 22.87 12
13 return 0;
14 1}

22 is stored in num1 and

.87 is stored in num2

A First Book of ANSI C, 4th Edition 45 A First Book of ANSI C, 4th Edition 46
Caution: The Phantom Newline Character [2] Caution: The Phantom Newline Character [3]
Program 3.11
Each Character Is g 9
Sent to a Buffer
As It Is Typed 1 #include <stdio.h>
2 int main()
i -
4 char fkey, skey:
5
Hie Ll o \n' } 6 printf ("Type in a character: ");
3 7 scanf ("sc%c", &fkey, &skey) ;lf* the enter code goes to skey *fl
Temporary Storage 8 printf ("The keystroke just accepted is %d", fkey):
Kc}-’l)l‘rafd 9 printf("\nType in another character: ");
Figure 3.6 Typed keyboard characters are first stored in a buffer 1o seanf("®c’, &skey); /% accept another code */
11 printf ("The keystroke just accepted is %d\n", skey);
12
13 return 0;
14 3}
47 48

A First Book of ANSI C, 4th Edition A First Book of ANSI C, 4th Edition

A First Look at User-Input Validation

g Program 3.12

1 #include <stdio.h>
2 int mainf{()
3 {
4 int numl, num2, num3;
5 double average;
6
7 /* get the input data */
8 printf ("Enter three integer numbers: ");
9 scanf ("%d %d %d4", &numl, &num2, &num3);
10
11 /* calculate the average*/
12 average = (numl + numZ + num3) / 3.0;
13
14 /* display the result */
15 printf ("\nThe avearge of %d, %d, and %d is %f\n",
16 numl, num2, num3, average);
17
18
19 return 0;
20 1}

A First Book of ANSI C, 4th Edition 49

204111: Fundamentals of Computer Science

1. Write and test a program that correctly
converts the Fahrenheit temperature into its
Celsius equivalent.

® The Fahrenheit is input from keyboard

2. Write and test a program that correctly
converts the Celsius temperature into its
Fahrenheit equivalent.

® The Celsius is input from keyboard

Fahrenheit = expression?

51

A First Book of ANSI C, 4th Edition

A First Look at User-Input Validation [2]

¢ As written, Program 3.12 is not robust

® The problem becomes evident when a user enters a non-integer

value

Enter three integer numbers: 10 20.68 20
The average of 10, 20, and -858993460 is -286331143.333333

¢ Handling invalid data input is called user-input validation
¢ Validating the entered data either during or immediately
after the data have been entered

® Providing the user with a way of reentering any invalid data

To be continue in while loop

A First Book of ANSI C, 4th Edition 50

204111: Fundamentals of Computer Science
I .

¢ Common Programming Errors

52

A First Book of ANSI C, 4th Edition

Common Programming Errors

® Omitting the parentheses, (), after main
int main;
® Omitting or incorrectly typing the opening brace, {, that
signifies the start of a function body
int main();
® Omitting or incorrectly typing the closing brace, }, that
signifies the end of a function
int main()

{

¢ Misspelling the name of a function; for example, typing
print() instead of printf()
print(“Hello World\n>);

A First Book of ANSI C, 4th Edition 53

Common Programming Errors [3]

¢ Using a variable in an expression before a value has been
assigned to the variable
int x , y, z;
z=Xx*y [/ 2;
¢ Dividing integer values incorrectly
int x = 3, y; .
v > ¢ 1 s =Y
y = x / 2; // lawaanswinny 1 wwgnilaig

® Mixing data types in the same expression without clearly

understanding the effect produced
double x = 5.2, z;
int y;
z=x%Yy * 3;

55

A First Book of ANSI C, 4th Edition

Common Programming Errors [2]

® Forgetting to close a string passed to printf() with a double
quote symbol
printf(“Hello World\n);
Omitting the semicolon at the end of each executable statement
int x =5, y =2

® Forgetting to include \n to indicate a new line
printf(“Hello World”);

® Forgetting to declare all the variables used in a program
int x = 5, y = 367;
zZ=X+Y;

¢ Storing an incorrect data type in a declared variable

int num;
hum = 2.5;

A First Book of ANSI C, 4th Edition 54

Common Programming Errors [4]

® Not including the correct conversion control sequence in printf()
function calls for the data types of the remaining arguments

printf("Result of %f + %d = %d", 6.2, 5, 6.2/3);

® Not closing the control string in printf() with a double quote
symbol followed by a comma when additional arguments are
passed to printf()

printf("Result of %f + %d = %d, 6.2, 5, 6.2/3);
® Forgetting to separate all arguments passed to printf() with
commas

printf("Result of
6.2/3);

%.2f + % = %.2f", 6.2 5

56

A First Book of ANSI C, 4th Edition

