

Microsoft Excel 2016

Benjamas Panyangam and Dr. Dussadee Praserttitipong

Adapted in English by Prakarn Unachak

1. Excel Basics

2. Calculation and Formula

Outline

3. Charts

4. Other Spreadsheet Works on Excel

2. Calculation and Formula

2.1 Writing a Formula in Excel

1) Precedence of Mathematical Operations
2) Using Cell Reference in Formula
3) Error Messages from Using Formula
2.2 Functions in Excel
4) Using Functions in Excel
5) Using Range of Data in Function
6) Examples of Functions in Excel
2.3 IF Functions
2.4 Cell References
7) Relative Cell Reference
8) Absolute Cell Reference
2.5 Referencing Cells in Another Worksheet

2.1 Writing a Formula in Excel

Components of a Formula in Excel
\square A formula always starts with equal sign (=), to let Excel knows that this cell contain a formula.
\square Mathematical operators such as +, -, *, /
\square Numbers, cell references, and/or functions.

* Mathematical Operators

Symbol	Operators	Example
+	Addition	$=71+12$
-	Subtraction	$=15-5$
*	Multiplication	$=8 * 3$
/	Division	$=15 / 5$
- (in front of a number)	Negative value	$=-10$
\wedge	Power	$=5^{\wedge} 3$

2.1.1 Order of Precedence

In a formula with multiple operators, the order of precedence will tell you which one will be performed first, from higher precedence to lower precedence.

In case of Parenthesis (()) the part inside the parenthesis will be performed first.

In case with two operators with the same precedence, excel will perform calculation from left to right.

2.1.1 Order of Precedence

Order of Precedence	Symbols
1. Parenthesis	()
2. Semicolon and comma (for cell reference)	: and ,
3. Negation	-
4. Percent	$\%$
5. Power	\wedge
6. Multiplication and Division	* and $/$
7. Addition and Subtraction	+ and -
8. Concatenation (for text)	
9. Comparison	

2.1.1 Order of Precedence

Example formula and order of Precedence

Formula	Order of Operations
$=3^{*} 4 / 2$	$=12 / 2$
	$=6$
$=15-3 / 2-1$	$=15-(3 / 2)-1$
	$=15-1.5-1$
	$=12.5$
$=-20+2^{*}-1$	$=-20+\left(2^{*}-1\right)$
	$=-20+-2$
	$=-22$

2.1.1 Order of Precedence

Example 1. If we put formula $=5^{\wedge} 2-1^{*}(3 / 2)$ on cell A1
Mr. A tried to perform calculation by himself, to see how
Excel works. He calculated the results using the following steps.
a) $=5^{\wedge} 2-1^{*}(3 / 2)$
b) $=\left(5^{\wedge} 2\right)-1^{*} 1.5$
c) $=(25-1)^{*} 1.5$
d) $=24 * 1.5$
e) $=36$

Question: Are these steps correct? If not, where did they go wrong, and how can we correct it?

2.1.1 Order of Precedence

2.1.1 Order of Precedence

Example 2. If we put formula $=2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{\star} 10$ on cell B1

Ms. B tried to perform calculation by himself, to see how
Excel works. She calculated the results using the following steps.
a) $=2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{*} 10$
b) $=\left(2^{\wedge} 3\right)^{\wedge} 2 /\left(2^{\wedge} 3\right)^{*} 10$
c) $=\left(8^{\wedge} 2\right) /\left(8^{*} 10\right)$
d) $=64 / 10$
e) $=6.4$

Question: Are these steps correct? If not, where did they go wrong, and how can we correct it?

2.1.1 Order of Precedence

2.1.2 Using Cell Reference

In term of cell name and function name, Microsoft Excel is caseinsensitive, it treats capital letter (A) and lowercase letter (a) as the same.
When you reference a cell, a color box will appear around the cell with the same color as the cell name.

Example We want to find the sum of values on cells A1, A3, B1, and B6 and put it on cell D1
(1) Click cell D1
(2) Type $=A 1+A 3+B 1+b 6$
(3) Press Enter to finish the formula

SU		$\checkmark \quad \vdots$	\times	$\checkmark f_{x}$	$=A 1+A 3+B 1+b 6$		
4	A	B	C	D	E	F	G
1	10	1		$=A 1+A 3+B 1+b 6$			
2	20	2					
3	30	3					
4	40	4					
5	50	5					
6	60	6					
7	70	7					
-							

2.1.3 Error Messages from Formula

(1) \#DIV/0! Division by zero
$>$ For example, =A1/B1 While the value of B1 is 0 .
(2) \#VALUE! Wrong type in a function
$>$ For example, =A1/B2 While the values of A1 and/or B2 are Text
(3) \#NAME? Wrong cell or function name
$>$ For example, =A1/AAAA1
(There is also \#\#\#\#\#\#\#\#, which will occur when the cell isn't wide enough.)

C3		-	\times	$\checkmark f_{x}$	=A1/AAAA 1	
4	A	B		C	D	(1) $=\mathrm{A} 1 / \mathrm{B} 1$
1	1000			\#DIV/0!		
2		A		\#VALUE!		$(2)=A 1 / B 2$
3			(1)	\#NAME?		$(3)=$ A1/AAAA1

2.2 Functions in Excel

Functions are provided formulas for various purposes. For examples, SUM for finding summation, MIN for finding minimum value. Microsoft Excel has provided and groups these functions for ease of use under Function Library group in Formulas tab.

File	Home Insert	Page Layout	Formulas Data
$f x$ Insert Function	AutoSum Recently Used - Financial *	12 Logical - Test - Date \& Time * Function Library	Lookup \& Reference Math \& Trig = More Functions *

2.2.1 Using Functions in Excel

(1) Click Formulas tab, the click $f \times$ Insert Function button.

(2)
(2) Or Click f_{x} button at the formula bar.

Insert Function dialog will appear,
where you can:
Search for a function:
Search of a function by keywords
Or select a category: look for a
function by group.
Help on this function: read help text about
 the function you are selecting.

2.2.1 Using Functions in Excel

Example of Searching

(1) Under Search for a function type standard deviation
(2) Click Go button
(3) Under Select a function List of functions that are related to standard deviation will appear

This will summarize the structure and purpose of the function
ภาคว̄ชาว̄กยาการคอแพิวเตอร์
COMPUTER SCIENCE DEPARTMENT, CMU
คณะวักยาศาสตร์ แหาวิกยาลัยเชียงใหบ่

2.2.1 Using Functions in Excel

Structure of a Function

```
function_name(argument1, argument2,...)
```

$>$ We refer to a function by its function name such as, SUM, AVERAGE.
$>$ The arguments follows the function name, inside the parentheses. This will be inputs for the function. Arguments can be cell reference, condition, text, number, etc. For some functions, order of arguments is important.

2.2.1 Using Functions in Excel

Example of Function's Structure

```
= SUM (number1, number2, ...)
```

- The function name is SUM. It will calculate the summation of arguments Number1, Number2, ...
- For SUM's arguments, there can be two types:
(1) Direct value: $=\operatorname{SUM}(1700,9800,7200)$
(2) Cell reference: = SUM(A4:D7)

$$
\begin{aligned}
& \text { or }=\text { SUM(A1, A4:D7) } \\
& \text { or }=\text { SUM(700, A4:D7) }
\end{aligned}
$$

2.2.1 Using Functions in Excel

Example of SUM usage to find summation of values in cell A1, A3, B1, B5 and B6. The result will be at cell D1

Method 1
Type $=\operatorname{SUM}(A 1, A 3, B 1, B 5, B 6)$ on cell D1
and press Enter

B6			\times	$=$ SUM (A1,A3,B	
4	A	B	C	D	E
1	10	1]		$=$ SUM $(A 1, A 3, B 1, B 5, B 6)$	
2	20	2			
3	30	3			
4	40	4			
5	50	5			
6	60	6			
7	70	7			
8					

D1		-	x	$\checkmark f_{x}$		=SUM (A1	1,B5,B6)
4	A	B	C	D	E	F	G
1	10	1		52			
2	20	2				-	
3	30	3		,		,	
4	40	4		\checkmark		Re	
5	50	5					
6	60	6					
7	70	7				V	
8							

2.2.1 Using Functions in Excel

Method 2: using Insert Function dialog.

2.2.1 Using Functions in Excel

Method 2: using Insert Function dialog. (cont.)

How to select cells form worksheet as arguments.

2.2.2 Using Range of Data for Functions

Range of Data, or "block" of contiguous cells, can be use for argument. You can specify a range by using : (Colon) to specify the block from top-left corner cell, following by the colon, follow by the lower-right corner of the block.

Starting Cell (top-left corner) : Ending Cell (lower-right corner)

Example

If you want to find a summation of values in cells A1 to B5
You can use the following formula =sum(A1:B5)

2.2.3 Examples of Functions in Excel

Statistical Functions

Function	Purpose
MIN(number1, number2, ...)	Find minimum value of arguments
MAX(number1, number2, ...)	Find maximum value of arguments
AVERAGE(number1, number2, ...)	Find average value of arguments
STDEV.P(number1, number2, ...)	Find population standard deviation of arguments
COUNT(value1,value2, ...)	Count cell in range that contains number
COUNTA(value1,value2, ...)	Count cell in range that is not empty
COUNTIF(range, criteria)	Count cell in range that satisfy the criteria (condition)

ภาควิชาว̄กยาการกอแพิวเตอร์

2.2.3 Examples of Functions in Excel

Mathematical Functions

Function	Purpose
SUM(number1, number2, ...)	Return summation of arguments
INT(number)	Convert argument into integer
ABS(number)	Find absolute value of argument
SQRT(number)	Find square root of argument
ROUND(number, num_digits)	Round number argument to the decimal points of num_digits

2.2.3 Examples of Functions in Excel

Example of Functions Usages

4	A	B	=ROUND(A1,1)
1	30.5123	30.5	
2	30.5123	31	=ROUND(A2,0)
3	30.5123	30	= INT(A3)
4	30.5123	5.523793986	=SQRT(A4)
5	16	4	=SQRT(A5)

2.2.3 Examples of Functions in Excel

More Example of Functions Usages

	A	B
1		10
2		20
3		30
4		40
5		50
6		60
7		70
8	sum	280
9	min	10
10	max	70
11	mean	40

Formula	Result
=SUM(B1:B7)	280
=MIN (B1:B7)	10
=MAX(B1:B7)	70
=AVERAGE(B1:B7)	40

2.2.3 Examples of Functions in Excel

* More Example of Functions Usages

		A	B
1		10	
2		20	
3		30	
4		40	
5		50	
6		60	
7		70	
8	sum	280	
9	min	10	
10	max	70	
11	mean	40	
12			
13			
14			

Formula	Result
=COUNT(A1:B11)	11
=COUNTA(A1:B11)	15
=COUNTIF(B1:B11,">=60")	4
=COUNTIF(B1:B11, "min")	1

2.2.3 Examples of Functions in Excel

* Date \& Time Functions

Function	Purpose
NOW()	Return current system date/time
TODAY()	Return current system date
DAY(serial_number)	Return day part of date argument
MONTH(serial_number)	Return month part (1 to 12) of date argument
YEAR(serial_number)	Return year part of date argument
WEEKDAY(serial_number,	Return day-of-the-week (1 to 7) of date argument (Example, Wednesday = 4)
return_type)	(Enam

2.2.3 Examples of Functions in Excel

Examples of Date \& Time Functions Usages

,	A	B	C	
1		13/7/2017 16:40		=NOW()
2		13/7/2017		=TODAY()
3		13		= DAY(TODAY())
4		7		=MONTH(TODAY())
5	16/10/2010	2010		=YEAR(A5)
6		5		=WEEKDAY(TODAY())

Date is 13 July 2017, which is Thursday.

2.2.3 Examples of Functions in Excel

Text Functions

Function	Purpose
BAHTTEXT(number)	Return thai text of monetary value (bath) in number
UPPER(text)	Convert text's characters to uppercase.
LOWER(text)	Convert text's characters to lowercase.

4	A	B	
1	30.512	สามสิบบาทห้าสิบเอ็ดสตางค์	=BAHTEXT(A1)
2	1234	หนึ่งพันสองร้อยสามสิบสี่บาทถ้วน	=BAHTTEXT(A2)
3	Abc	ABC	=UPPER(A3)
4	Abc	abc	=LOWER(A4)

2.3 IF Function

IF function allow logical computation. It will check the provided logical test and return a result based on the logical test (TRUE or FALSE)

IF Function Structure:

```
=IF (logical_test, value_if_true,value_if_false)
```

\square logical_test is the condition of logical test, the test can return TRUE or FALSE.
\square value_if_true is the result if the test return TRUE.
\square value_if_false is the result if the test return FALSE.

2.3 IF Function

You can use the following comparison operators, which can return TRUE or FALSE

Greater Than	$>$
Greater or equal to	$>=$
Less than	$<$
Less than or equal to	$<=$
Not equal	$<>$

2.3 IF Function

- Example 1
= IF(A1>B1, "Hanaga", "Hello")

If $\mathbf{A 1}$ is greater than $\mathbf{B 1}$
Hanaga will be displayed
Else
Hello will be displayed

C1				X	f_{x}	$=$ IF(A1>B1,"Hanaga","Hello")	
	A	B	C	D	E		
1	30	100	Hello				

2.3 IF Function

Example $2=I F(A 2>B 2$, "Panda")

C2		-	\vdots	X	f_{x}	$=1 F(A 2>B 2$, "Panda")		
	A	B	C	D	E	F		
1	30	100	Hello					
2	30	100	FALSE					

2.3 IF Function

ภาควิชาว̄ทยาการคอบพิวเตอડ์
COMPUTER SCIENCE DEPARTMENT, CMU
คณะวักยาศาส๓ร์ แหาวิกยาลัยเชียงใหบ่

2.3 2.3 IF Function

* Grading Example

=IF(B2>=80,"A",IF(B2>=65,"B",IF(B2>=50,"C","F")))

2.4 Cell Reference

There are two ways to reference a cell in Excel

1) Relative Reference

When you copy the cell to another cell, Excel will change the cell reference based on how many rows/columns between the source and the destination of the copying. The structure of the formula remain the same.
2) Absolute Reference

When you copy the cell to another cell, the cell reference will not change.

2.4.1 Relative Cell Reference

Example 1

1) The formula on C 1 is $=\mathrm{A} 1+\mathrm{B} 1$

- Find the sum of 2 cells
- Using relative references

2) We copy cell C1 to cell C2 (moving down 1 row)

The formula on C 2 is now =A2+B2
The relative references have move down 1 row. A1 $\rightarrow \mathrm{A} 2$, for example.

Still finding the sum between 2 cells

2.4.1 Relative Cell Reference

Example 2

1) Formula in A4 is $=\operatorname{SUM}(\mathrm{A} 1:$ ARelative Cell R
\square Using SUM function to find the sum of 3 contiguous cells
\square Using relative references

4	A	B	C	D
1	5	1	6	
2	10	2	12	
3	15	3	18	
4	$=$ SUM(A1:A3)			
5				

2) We now copy cell A4 to cell C 4 (moving right 2 columns)

Formula in C4 is now =SUM(C1:C3)
The relative reference also move right 2 columns.
\checkmark Still using SUM function to find the sum of 3 contiguous cells.

2.4.1 Relative Cell Reference

* Example of Using Relative Reference
 we want.

2.4.2 Absolute Reference

* For absolute reference, the reference will not change regardless of where it is copied to.
* We use dollar sign (\$) in front of the row and/or column part of the cell reference to mark the part(s) that will not change. If you mark both, both will not change. The unmarked part can change as relative reference.
\$A1 Column will always be A, but row can change
A\$2 Row will always be 2, but column can change
\$A\$1 Cell reference will always be A2

2.4.2 Absolute Reference

2.4.2 Absolute Reference

* Example of Using Absolute Reference

2.5 Referencing Cells in Another Worksheet

If you want to access values in cells in another worksheet, you need to specify the worksheet the cells are located.

* Referencing worksheet format

[filename.xlsx]sheetname!datarange

filename is the name of the workbook/file, that file need to be open.
\checkmark sheetname is the name of the worksheet to reference
$\sqrt{ }$ datarange is the data range in the worksheet we want to reference

- Example: [Product.xIsx]Sheet1!\$C\$19
- If the worksheet is in the same workbook you don't need to specify the workbook, for example: sheet2!A1

2.6 Referencing Cells in Another Worksheet

Example of referencing another worksheet in the same workbook
Example On score worksheet, we have grading data on cells $\mathbf{C} 2$ to $\mathbf{C 8}$

We want to count number of A and display the result at Sheet2 worksheet.

	A	B	C	
1	No.	Score	Grade	
2	$\mathbf{1}$	$\mathbf{5 1}$	C	
3	$\mathbf{2}$	$\mathbf{6 5}$	B	
4	$\mathbf{3}$	$\mathbf{9 8}$	A	
5	$\mathbf{4}$	$\mathbf{7 6}$	B	
6	$\mathbf{5}$	$\mathbf{8 7}$	A	
7	$\mathbf{6}$	$\mathbf{2 5}$	F	
8	$\mathbf{7}$	$\mathbf{6 0}$	\mathbf{C}	
9				

Edit

2.6 Referencing Cells in Another Worksheet

* Example of referencing another worksheet in the same workbook (cont.) - counting every grade

The formula in B1 use relative reference to A1 to get which grade to count, this can be copied to cells B2 to B5 and still count the correct grade

