Microsoft Excel Part 4: Data Analysis

Prakarn Unachak
Department of Computer Science
Faculty of Science
Chiang Mai University

Outline

- Installing Data Analysis ToolPak
- Correlation
- Histogram
- What-If Analysis (Goal Seek)
- Linear Regression

[Installing Data Analysis ToolPak

1. Check whether if Data Analysis command already appears under Data tab.
If the command does not appear yet:
2. Click the office button.
3. Click Excel Options.
4. Select Add-ins.
5. Change Manage: option to Excel Add-ins.
6. Click Go.

Installing Data Analysis ToolPak

7. Under Add-Ins dialog box, make sure the Analysis ToolPak checkbox is checked.
8. Click OK (a few times).

Installing Data Analysis ToolPak (cont.)

1

[Installing Data Analysis ToolPak (cont.)

CORRELATION

Correlation

Correlation tells you how close two set of data related to each other. The value is between -1 and 1.

- If the two data sets have positive correlation, when one increase/decrease, the other will go to the same direction.
- If the two data sets have negative correlation when one increase/decrease, the other will go to the other direction.
- If the correlation is zero, there is no relation between two data sets. Whether the one decrease/increase will not predict the other.

Calculating Correlation

1. Select Data \rightarrow Data Analysis \rightarrow Correlation
2. Select Input Range
3. Select Options

- Grouped By: Columns/Rows.
- Check if first row of data is a label.

4. Select Output Range.

	E	F	G	H
	W	X	Y	I
	W	1		

HISTOGRAM

Histogram

- A histogram is a way to display data by grouping each data point into ranges (bins) of their values
- Good for showing data distribution

Histogram (cont.)

- To perform Histogram on Excel, you need data and bins.
- Bins are cells whose values used to determine which group a data point will go to.

Calculating Histogram

1. Select Data \rightarrow Data Analysis \rightarrow Histogram

2. Select Input Range
3. Select Bin Range
4. Select Output Range
5. Check other options

- Chart Output if you want charted version of histogram.

6. Click OK

WHAT-IF ANALYSIS (GOAL SEEK)

What-if Analysis

- Data \rightarrow Data Tools \rightarrow What-If Analysis
- Allow you to see the effect of different values on a (group of) formulas
- For this course, we will focus on Goal Seek
- What should the input value be to get the result I need?

Goal Seek

- First, you need to set the formula on your spreadsheet

- To value: is the target output value
- By changing cell: the input value

The answer will be here

Goal Seek Example

You want to solve $x^{2}-16.5 x+35=0$

- Let Cell B1 be x. Set the value to 0 .
- Let Cell A2:A4 contain the coefficients, 1, -16.5 and 35
- Let $\mathrm{B} 2=\mathrm{B} 1^{\wedge} 2, \mathrm{~B} 3=\mathrm{B} 1$, and $\mathrm{B} 3=1$
- Let C2 = A2*B2, C3 = A3*B3, C4 = A4*B4
- Let C5 = SUM(C2:C4)

Goal Seek (cont.)

 Start goal seek.- Set...
- Set cell: to \$C\$5
- To value: to 0

- And By changing cell: to \$B\$1
- Click OK. The answer should be at cell B1.
- You can try changing B2 to 20, and run goal seek again.

LINEAR REGRESSION

Linear Regression

- Linear regression is an analysis technique used to derive a relationship between dependent variable and one or more independent (explanatory) variables.
- Can be use both to explain data, and predict values of data in the future.

Linear Regression (cont.)

- Linear regression results will be in this form:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{n} X_{n}+\varepsilon
$$

- Y is dependent variable.
- $X_{1} . . X_{n}$ are independent or explanatory variables.
- β_{0} is an intercept or constant values of the equations.
- $\beta_{1} . . \beta_{n}$ are coefficients of each independent variables.
- ε is an error term or residue. This is not a constant.

Linear Regression, in Graph

Linear Regression (cont.)

1. Select Data \rightarrow Data
 Analysis \rightarrow Regression
2. Select Y (dependent variable) Range
3. Select X (independent variable) Range
4. Select Output Range.
5. Select options.
6. Click OK

	A	B	C
1	X1	X2	Y
2	0	0	5.049
3	0.62	1.7	7.981
4	1.47	3.01	11.036
5	2.04	4.06	13.163
6	2.11	5.69	14.925
7	2.16	6.74	16.087
8	2.19	8.28	17.725
9	2.27	9.82	19.395
10	2.82	11	21.734
11	3.28	12.25	23.862
12	3.45	13.3	25.272
13	4.13	14.45	27.809
14	4.9	15.81	30.692
15	5.33	16.81	32.505
16	5.83	17.93	34.6
17	6.76	19.64	38.212
18	7.55	20.98	41.083
19	8.36	22.63	44.398
20	8.81	24.29	46.95
21	9.69	25.83	50.238

Reading the Results

G	H	1		J	K	L	M	N	o
SUMMARY OUTPUT									
Regression Statistics				R-square, adjusted R-square measure accuracy of model as a whole. (The entire equation). Closer to 1 is better.					
Multiple R	0.99999831								
R Square	0.99999661								
Adjusted R Square	0.99999621								
Observations	20								

ANOVA						- t-Stat, P-value measure accuracy for that one variable. - The higher the tStat, the better. - The lower the Pvalue, the better
	df	SS	MS	F	Significance F	
Regression	2	3391.344686	1695.67234	2509499	3.1883E-47	
Residual	17	0.011486927	0.0006757			
Total	19	3391.356173				
Intercept	Coefficients	tandard Error	t Stat	P-value	Lower 95\%	
X1	1.97983667	0.009738943	203.290713	$3.2 \mathrm{E}-30$	1.9592893	
X2	1.00667981	0.003559745	282.795514	1.2E-32	0.9991694	

The regressed equation is $Y=1.98^{*} \mathrm{X} 1+1.01^{*} \mathrm{X} 2$ $+5.05$

E Compare the Results

- You can then compute estimated
$\hat{Y}=1.98 X_{1}+1.01 X_{2}+5.05$ and compare the difference

Y	Y^	diffY
5.049	5.05	0.02%
7.981	7.9946	0.17%
11.036	11.0007	0.32%
13.163	13.1898	0.20%
14.925	14.9747	0.33%
16.087	16.1342	0.29%
17.725	17.749	0.14%
19.395	19.4628	0.35%
21.734	21.7436	0.04%
23.862	23.9169	0.23%
25.272	25.314	0.17%
27.809	27.8219	0.05%
30.692	30.7201	0.09%
32.505	32.5815	0.24%
34.6	34.7027	0.30%
38.212	38.2712	0.15%
41.083	41.1888	0.26%
44.398	44.4591	0.14%
46.95	47.0267	0.16%
50.238	50.3245	0.17%

