Microsoft Excel

Part 2: Calculations \& Functions

Department of Computer Science

Faculty of Science

Chiang Mai University

1. Creating you own formula
2. Using functions in Excel
3. Using cell references with functions
4. Cell reference from other worksheets
5. Sorting

Performing Calculation

2 Ways to perform calculation in Excel

1. Write your own formula
2. Using functions provided by Excel

1. Writing your own formula

Main components of a formula

1. Cell value starts with equation symbol (=)
2. The calculation

$$
=3+5
$$

1. Writing your own formula (2)

1. Mathematical Operations in Excel

Symbol	Description	Example
+	Plus	$71+12$
-	Minus	$15-5$
$*$	Multiply	$3^{*} 8$
$/$	Divide	$6 / 2$
-	Minus sign	-27
\wedge	Power	$5^{\wedge} 4$

1. Writing your own formula (3)

2. Precedence for mathematical operations in

Excel

- If there are multiple operators in a formula,

Excel will perform calculation for operators with the higher precedence first.

- If there are multiple operators with equal precedence, Excel will perform calculation from left to right.

Operation	Symbol	Precedence
1. Parentheses	()	Highest
2. Colon and Comma	: and,	
3. Additive Inverse	-	
4. Percent	\%	
5. Power	\wedge	
6. Multiplication and Division	* and /	
7. Addition and Subtraction	+ and -	
8. Concatenation (for text)	\&	
9. Comparison	=, <, >, <=, >=, <>	Lowest

1. Writing your own formula (5)

Example:
If the formula in cell A1 is
$=15-3 / 2-1$, what is the
result?

Calculation steps:

$$
\begin{aligned}
\text { 1. } & =15-3 / 2-1 \\
& =15-1.5-1 \\
\text { 2. } & =15-1.5-1 \\
& =13.5-1 \\
\text { 3. } & =13.5-1=12.5
\end{aligned}
$$

1. Writing your own formula (6)

- Another Example:

If the formula in cell A2 is
$=-22+2$ * -1 , what is
the result?

Calculation steps:

$$
\begin{aligned}
\text { 1. } & =-22+2^{*}-1 \\
& =-22+-2 \\
\text { 2. } & =-22+-2 \\
& =-24
\end{aligned}
$$

1. Writing your own formula (7)

Exercise 1:
Follow these steps to
calculate the final values,
when the formula of the cell
is $=5^{\wedge} 2-1^{*}(3 / 2)$

Steps:

$$
\begin{aligned}
& \text { 1. }=5^{\wedge} 2-1 *(3 / 2) \\
& \text { 2. }=5^{\wedge} 2-1 * 1.5 \\
& \text { 3. }=25-1 * 1.5 \\
& \text { 4. }=24 * 1.5 \\
& \text { 5. }=36
\end{aligned}
$$

Question: Are the steps correct? If not, which one is not correct? And how to fix them?

1. Writing your own formula (8)

Steps:

1. $=5^{\wedge} 2-1^{*}(3 / 2)$
2. $=5^{\wedge} 2-1$ * 1.5
3. $=25-1$ * 1.5
4. $=24$ * 1.5
5. $=36$

Corrections:

$$
\begin{aligned}
& \text { 1. }=5^{\wedge} 2-1 *(3 / 2) \\
& \text { 2. }=5^{\wedge} 2-1 * 1.5 \\
& \text { 3. }=25-1 * 1.5 \\
& \text { 4. }=25-1.5 \\
& \text { 5. }=23.5
\end{aligned}
$$

1. Writing your own formula (9)

Exercise 2:
Follow these steps to
calculate the final values,
when the formula of the cell
is $=2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{\star} 10$

Steps:

1. $=2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{*} 10$
2. $=2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{*} 10$
3. $=8^{\wedge} 2 / 8^{*} 10$
4. $=64 / 80$
5. $=0.8$

Question: Are the steps correct? If not, which one is not correct? And how to fix them?

1. Writing your own formula (10)

Steps:

$$
\begin{array}{ll}
\text { 1. } & =2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{*} 10 \\
\text { 2. } & =2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{\star} 10 \\
3 . & =8^{\wedge} 2 / 8^{\star} 10 \\
4 . & =64 / 80 \\
5 . & =0.8
\end{array}
$$

Incorrect

Corrections:

1. $==2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{*} 10$
2. $=2^{\wedge} 3^{\wedge} 2 / 2^{\wedge} 3^{*} 10$
3. $=8^{\wedge} 2 / 8^{*} 10$
4. $=64 / 8 * 10$
5. $=8 * 10$
6. $=80$

1. Writing your own formula (11)

Exercise 3:
Follow these steps to
calculate the final values,
when the formula of the cell
is $-15^{*}-3^{\wedge} 1^{*} 2$

Steps:

$$
\begin{aligned}
& \text { 1. }=-15^{*}-3^{\wedge} 1^{*} 2 \\
& \text { 2. }=-15^{*}-3^{*} 2 \\
& \text { 3. }=45^{*} 2 \\
& \text { 4. }=90
\end{aligned}
$$

Question: Are the steps correct? If not, which one is not correct? And how to fix them?

The steps are correct, but equation symbol (=) is missing.

1. Writing your own formula (12)

3. Calculation with cell reference

Notice: In Excel, cell name is not case-sensitive. That is a1 will work like $A 1$.

1. Writing your own formula (13)

Example Fine the sum of cell A1, A3, B1, B5, and B6.

Display the result at cell D1.

1. Click on the cell you want to display the result. (D1, in this case)
2. Type in the formula
$=A 1+A 3+B 1+B 5+B 6$. This can be done in 2 ways:
3. Type the formula directly to cell D1.
4. Click on cell D1, then type in the formula at the formula bar.

Notice Reference cells will have colored borders matching its color at the formula.
3. When you finish, press Enter key.

2. Using Function

Structure of a Function

=function_name(argument1, argument2m,...)

- Before we input something as an argument, we need to know what type of data the function will accept as an argument.
- You can input the data directly:
$=$ SUM $(1700,9800,7200)$
- Or use cell reference:
=SUM(E4:E7)

2. Using Function (2)

1. Looking for a function in Excel
(1) Click Formulas tab

2. Using Function (3)

Search for a function:

- User can type in keywords and click Go to search for related functions.

For example, type in Summation will result in SUM function appear in Select a function: box.

2. Using Function (4)

Or select a category:
Functions are grouped into categories such as Accounting, or Statistics.

When you pick a category, functions under that category will appear under Select a function: box.

2. Using Function (5)

Display help text for selected
function for better
understanding.

2. Using Function (6)

When you find the function you want, click $O K$ to use the function.

2. Using Function (7)

Calculating sum using SUM function

Example: We want to find the sum of cell $A 1, A 3, B 1, B 5$ and $B 6$.

Adds all the numbers in a range of cells.

Number 1: number 1, number2,... are 1 to 30 numbers to sum. Logical values and text are ignored in cells, included if typed as arguments.

Formula result $=$ 89

Help on this function

1. Click on cell D1.
2. Click at f_{x} and then type Summation or sum in the search box, then click Go.
3. Look at the function list in Select a function box, a SUM function will appear. Click on SUM function.
4. Click OK. Function Argument dialog box will appear. Type
in the cell names as shown.

2. Using Function (8)

2. Using Function (9)

5. Under SUM, type in the arguments in Number1 box or Number2 box. Even when we have more than 2 numbers, each box can take more than one. Use comma (,) to separate each value.
6. After you have typed in all arguments, click OK.
7. When you click on cell D1, the function and the arguments will appear in the formula bar.

2. Using Function (10)

2. Using Range of Data

You can specify the range of data by using colon symbol (:) in this format:

	A	B
1	0.8	4
2	3	3
3	12	1
4	1	14
5	3	5

Where Starting_cell is the top left corner of the group, and Ending_Cell is the bottom right corner.

Example: If you want to add all cells from $A 1$ to $B 5$, you can write the formula as =SUM(A1:B5)

2. Using Function (11)

3. Functions you should know

3.1 Functions for basic calculations

SUM for getting adding all of selected cells
MAX for finding the maximum value of selected cells

MIN for finding minimum value of selected cells
AVERAGE for finding average value of selected cells

2. Using Function (12)

3. Functions you should know (2)

3.2 Functions for date/time information

O NOW displays current system date/time
TODAY displays current system date
DAY displays day part of date argument
MONTH displays month part of date argument
Y YEAR displays year part of date argument
WEEKDAY displays weekday of the date
argument. Return 1 (Sunday) - 7 (Saturday)

2. Using Function (12)

3. Functions you should know (3)
3.3 IF function for logical computation

2. Using Function (13)

3. Functions you should know (4)
3.3 IF function for logical computation (2)

2. Using Function (14)

3. Functions you should know (4)
3.3 IF function for logical computation (2)

2. Using Function (15)

3. Functions you should know (5)

3.3 IF function for logical computation (3)

2. Using Function (16)

2. Using Function (17)

3.4 Comparison Operators

Greater Than	$>$
Greater or equal to	$>=$
Less than	$<$
Less than or equal to	$<=$
Not equal	$<>$

2. Using Function (18)

3. Functions you should know (6)

3.5 Counting functions

COUNT counts cell in range that contains number.
O COUNTA counts cell in range that is not empty.
COUNTIF counts cell in range that fit given condition.

2. Using Function (19)

3. Functions you should know (7)
3.5 Counting functions (2)

Example

Formula	Result
$=$ COUNT (A1:A5)	2
$=$ COUNTA(A1:A5)	4
$=$ COUNTIF(A1:A5,15)	1
$=$ COUNTIF(A1:A5,abc)	0
$=$ COUNTIF(A1:A5, "abc")	1

2. Using Function (20)

3. Functions you should know (8)

AND(argument1, argument2) will return TRUE if both arguments are TRUE, and return

FALSE otherwise.
$O R()$ will return TRUE if at least one of the two arguments is TRUE, and return FALSE if both arguments are FALSE.

2. Using Function (21)

AND() and OR() can be use to make IF() function conditions easier to write.

Example: If you want to know if the value of cell B3 is in the range of 0 and 10 or not.

- You can use:

○ IF(AND(B3 >= 0, B3 <=10), "Yes", "No")
\square Or you can use:

- $\operatorname{IF}(\mathrm{OR}(\mathrm{B} 3<0, \mathrm{~B} 3>50)$, "No", "Yes")

3. Cell Reference

Cell Reference is using cell name to get to cell data.

There are two ways to reference a cell in
Excel

1. Relative Reference
2. Absolute Reference

3. Cell Reference (2)

3.1 Relative Reference

\Rightarrow Default reference
$>$ When you copy the reference to another cell, the reference will change, but formula remain the same.

3. Cell Reference (3)

3.1 Relative Reference (2)

Example: Formula is on cell C1. The formula is the sum of 5 consecutive cells $A 1$ to $A 5$. The formula is $=\mathbf{s u m}(\mathbf{A 1 : A 5)}$

3. Cell Reference (4)

3.1 Relative Reference (3)

When you copy formula with relative reference to cell $C 2$. The reference will change. Since C2 is one row down from C 1 , all relative reference will move down one row as well. The resulting formula will be =sum(A2:A6)

3. Cell Reference (5)

3.2 Absolute Reference

\Rightarrow For absolute reference, the reference will not change regardless of where it is copied to.
\Rightarrow We use dollar sign (\$) to mark the reference as absolute reference.
$>$ When the $\$$ is in front of the row part of the cell name, row will not change. Same applies to column.

3. Cell Reference (6)

3.2 Absolute Reference (2)
$>$ For example, if you want the column to be A regardless of where you copy it to, use \$A1

- If you want column changing, but also want to the row to always be 2, use $\mathrm{A} \$ 2$
P If you want column to always be A and row to always be 1, use $\$ \mathbf{A} \$ 1$

P You can select the reference, then press F4 to toggle between absolute and relative reference.

3. Cell Reference (7)

3.2 Absolute Reference (3)

- You want to add fixed value at cell $E 1$ to sum
 of column $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in a row and put the result on column D. The formula at D1 will be
$=\operatorname{sum}(A 1: C 1)+\$ E \$ 7$
- When you copy the formula to D2, it will become
$=\operatorname{sum}(A 2: C 2)+\$ E \$ 7$

Example of Relative Reference

	E4	$f_{x}=C 4^{*} 04$		Formula	at E4 is =C	
,	B	C	D	E	/ F	C
1					-	
2			ส่วนลด	5\%/		
3	ชื่อสินค้า	ราคา/หน่วย	ปริมาณ	รวมราคว	ราคาที่ลดแล้ว	
4	ดินสอ	5	10	+50		
5	ปากกา	10	15			
6	สมุด	12	20			
7	ยางลบ	7	20			
8				รวม		
9						
Read	/ Sheet1 Sheet2, Sheet3 /88					
				$\stackrel{(}{+}$		

Example of Relative Reference (2)

Example of Relative Reference (3)

Example of Absolute Reference

	B		D	E	F	${ }^{\text {c }}$
1		Formula a	at F 4 is			
2		=E4-(E4*S		5\%.		
3	ชื่อสินค้า	- 4 -(E4		गयรापर	ราคาที่ลคแล้ว	
4	ดินสอ	5	10.	50)	=E4*SE\$2	
5	ปากกา	10	15	150		
6	สมด	12	20	240		
7	ยางลบ	7	20	140		
8				รวม		
9						
					(1) ${ }^{\text {¢ }}$	

Example of Absolute Reference (2)

Example of Reference by Range

4. Reference from Other Worksheet

If you want to access values in cells in other worksheet, they can be referenced as follows:

worksheet_name!range_of_cells

Naming Cells

- You can assigned a group of cells with a name, making referencing easier.
- Cell name can be referenced from other worksheet as well.

- Steps:

1. Select cells
2. Click the name box
3. Type in the name
4. Press Enter

4. Reference from Other Worksheet (2)

Example We want to count
student with A for grade, which is in cell $C 2$ to $C 7$, and display the result at cell $B 2$, on another worksheet, Sheet2.

1	A	B		c
1	ลำดับที่	คะแนนเกรด		
2	1	51	C	
3	2	65	B	
4	3	98	A	
5	4	76	B	
6	5	87	A	
	6	25	F	

4. Reference from Other Worksheet (3)

5. Sorting

5. Sorting (2)

1. Select primary column to sort [Sort by]

5. Sorting (3)

2. Select Secondary Column [Then by]

