Ch. 1: Computer System

part I

Benjamas Panyangam

2013 Revision by Suphakit Awiphan Ph.D.

Adapted for English Section by Kittipitch Kuptavanich

And Prakarn Unachak

Department of Computer Science, Faculty of Science, Chiang Mai University

Chapter 1 Computer System

- Computer Classification
- Data Representation in Computer System
- Components of Computer System
 - Hardware
 - Software
 - Peopleware

Computer Classification

- Classified by data handling
- Classified by work purposes
- Classified by size

Classified by data handling

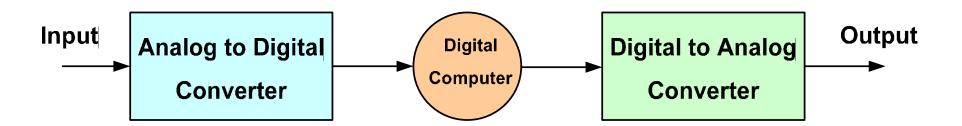
1. Analog Computer

- continuous (approximate) values
- real time processing

2. Digital Computer

- Discrete Value
- Data are represented as 0 and 1
- More accuracy than analog computer

Phillips Hydraulic Computer



Personal Computer

Classified by data handling

3. Hybrid Computer

- A merge between an analog computer and a digital Computer
- Uses Converter b/w analog and digital

Classified by work purposes

1. General Purpose Computer

Desktop Computer, Notebook Computer, Mobile Devices

2. Special Purpose Computer

- Embedded Computer
- Elevator, washing machine, Car

Classified by Capacity

- 1. Embedded Computer
- 2. Microcomputer, Personal Computer
- 3. Workstation, Server
- 4. Mainframe
- 5. Supercomputer

Embedded Computer

- Computers that are a part of a machine or device
- execute a program that is stored in non-volatile memory

Microcomputer, Personal Computer

- Microcomputers are the most common type of computers used by people today
 - Desktop computers, Notebook computers, Game consoles, Mobile devices

Workstation, Server

 high-end microcomputer designed for technical or scientific applications.

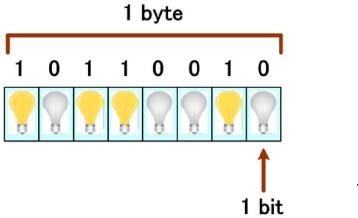
- They are optimized for the visualization and manipulation of different types of complex data and also mutitasking
 - 3D mechanical design, engineering simulation, (e.g. computational fluid dynamics), animation and rendering of images, and mathematical plots

Mainframe

- high reliability and security
- Emphasizes on reliable of transactions
- High hardware and computational utilization rates to support <u>massive throughput</u>
- Run uninterrupted for long periods of time.

Supercomputer

- Emphasizes on speed of calculation
- Scientific and engineering problems (highperformance computing) with high precision


Fujitsu K Computer, @Kobe, Japan

Cray Titan, @Oak Ridge, USA

Data representation in Computer System

- Bit is the basic unit of information in computing and digital communications (value of 0 or 1)
- Byte unit of information most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer.

Data representation in Computer System

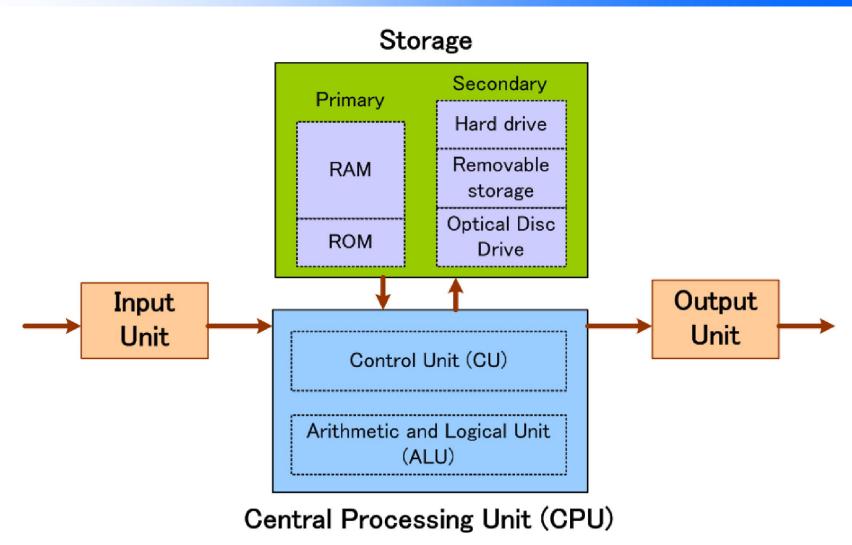
Bit – Byte examples

0	1 bit
1	1 bit
1011	4 bit
10100011	8 bit or 1 byte

Binary = base 2 Decimal = base 10

ASCII Character Code

Binary	Decimal	Character
0010 1010	42	*
0010 1011	43	+
0011 0001	49	1
0011 0010	50	2
0100 0001	65	Α
0100 0010	66	В
0100 0011	67	С
0100 0100	68	D


Data Capacity

1 Kilobyte (KB)	1024 Bytes (2 ¹⁰ Bytes)
1 Megabyte (MB)	1024 Kilobytes
1 Gigabyte (GB)	1024 Megabytes
1 Terabyte (TB)	1024 Gigabytes
1 Petabyte (PB)	1024 Terabytes

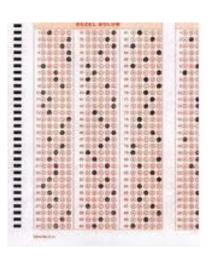
Hardware

- The collection of physical elements that constitute a computer system
- 1. Input Unit
- 2. Central Processing Unit
- 3. Output Unit
- 4. Memory, Storage
 - Primary Storage, Main Memory
 - Secondary Storage

Computer Components

Input Unit

- 1. Keyboard
- 2. Mouse
- 3. Touch pad
- 4. Scanner
- 5. Microphone
- 6. Fingerprint reader
- 7. Barcode reader


Input Unit

8. Magnetic Ink Character Recognition: MICR

9. Optical Mark Reader: OMR

Input Unit

10. QR code reader

11. Contactless smart card reader

Central Processing Unit

Central Processing Unit (CPU)

- The hardware within a computer that carries out the instructions of a computer program
- Performing the basic
 - arithmetical,
 - logical, and
 - input/output
- Microprocessor
 - More than one processor in a chip, multiprocessor.

Central Processing Unit

CU: Control Unit

 Extracts instructions from memory and decodes and executes them calling on the ALU when necessary

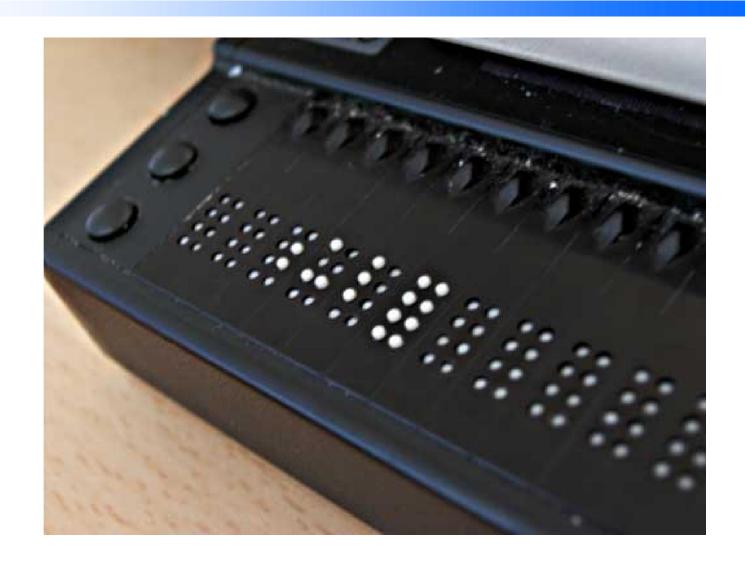
ALU: Arithmetic Logic Unit

Performs arithmetic and logical operations

Output Unit

Soft Copy

- Monitor
 - Cathode Ray Tube (CRT)


• Liquid Crystal Display (LCD)

Speaker

Output Unit

Output Unit

Hard Copy

Printer

Impact Printer : Dot matrix printer

Non-impact Printer : Laser, Inkjet printer

Plotter

Memory or Storage Unit

- Primary / Main Memory
 - ROM: Read Only Memory
 - RAM: Random Access Memory

- Secondary Memory
 - SAS: Sequential Access Storage
 - DAS: Direct Access Storage

Primary / Main Memory

ROM (Read Only Memory)

- Read Only (sort of)
- Non-volatile (Requires no power to maintain data)

RAM (Random Access Memory)

- Allows stored data to be accessed directly in any random order.
- Store data and instruction temporarily to be calculated by CPU
- Volatile (Requires power to maintain data)

SAS: Sequential Access Storage

- A class of data storage devices that read their data in sequence.
- Slower access to non serial data.

Examples

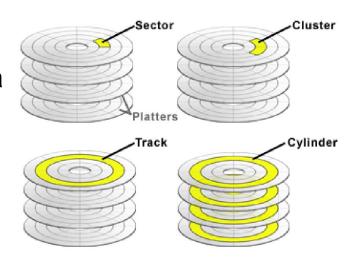
- Paper Tape
- Punch Card
- Magnetic Tape

SAS: Sequential Access Storage

Punch Card

Paper Tape

Magnetic Tape


DAS: Direct Access Storage

- Relatively low access time relative to its capacity
- > The access methods: Sequential, Indexed and Direct.
- Magnetic
 - Hard Disk
 - Diskette or Floppy Disk
- Optical
 - Compact Disc (CD)
 - Digital Versatile Disc (DVD)
 - Blu-ray Disc (BD)

- Solid State
 - USB Flash Drive
 - Solid State Drive (SSD)

Magnetic Disk Details

- Sector: smallest unit of data that can be read or written from a disk. Typically, sectors are 512 bytes in size, but other sizes including 1024 and 2048 are common.
- Cluster: A cluster is the smallest unit of data that a file system can allocate for a file. (e.g. 512 – 4,096 bytes for NTFS)

- Track: A track is a concentric ring of sectors on a platter.
- Cylinder: A cylinder is a group of tracks in all the platters

CD and DVD

- The data is stored on the disc with a laser or stamping machine, and can be accessed when the data path is illuminated with a laser while spinning.
- CD storage capacity: 650 870 MB
- DVD storage capacity: 4.7 17 GB
 - CD-ROM
 DVD-ROM
 DVD-RW
 - CD-R
 DVD-R
 DVD+RW
 - CD-RW
 DVD+R
 DVD-RAM

Blu-ray Disc

 Optical disc storage medium designed to supersede the DVD format.

Blu-ray Disc uses a 405 nm "blue" laser diode.

- Single layer: 25 GB
- Double layer: 50 GB
- Triple layer (BDXL): 100 GB
- BD-R (Blu-ray Disc Recordable)
- BD-RE (Blu-ray Disc Rewritable)

Solid State Storage

- No Moving part
- Faster as data can be retrieved directly from various locations
- More expensive per unit of storage than HDDs.
- i.e. USB Memory, SD Card, Solid State Drive (SSD)

