Simulation

from Wikipedia and Youtube

Simulation

• **Simulation** is the imitation of the operation of a real-world process or system over time.

Physical simulation and Interactive simulation

- Physical simulation refers to simulation in which physical objects are substituted for the real thing based on laws of physics.
- Interactive simulation is a special kind of physical simulation in which physical simulations include human operators such as in a flight simulator or a driving simulator.

Cockpit of a flight simulator.

Computer simulation

- A **computer simulation** is a simulation, run on computers to reproduce behavior of a system.
- The simulation uses an abstract model (a **computational model**) to simulate the system.
- Computer simulation has become a useful part of mathematical modeling many natural systems in physics, astrophysics, climatology, chemistry, biology, and human systems such as economics, psychology, social science, and engineering.

Simulation of Typhoon

Simulation of Typhoon Mawar, Japan, 2005

Earthquake Simulations

San Andreas Fault, Southern California, USA

Life Cycle of the First In silico Cell

© 2013 Encyclopaeda Britannica, Irec

Cell division

Computational Chemistry for Drug Design

Mathematical Models and Simulation in Material Science

Simulation of Nematic Liquid Crystals

Simulation Model

 Simulation model represents the key characteristics or behaviors/functions of the selected physical or abstract system or process.

Mathematical Modeling

Types of Mathematical Models

Continuous-Time and Discrete-Time Mathematical Models

Continuous-Time Systems

Most continuous time systems represent how continuous signals are transformed via differential equations.

E.g. circuit, car velocity

Discrete-Time Systems

- Most discrete time systems represent how discrete signals are transformed via difference equations
- E.g. bank account, discrete car velocity system

$$\frac{dv_{c}(t)}{dt} + \frac{1}{RC}v_{c}(t) = \frac{1}{RC}v_{s}(t)$$
$$m\frac{dv(t)}{dt} + \rho v(t) = f(t)$$

First order differential equations

$$y[n] = 1.01y[n-1] + x[n]$$
$$v[n] - \frac{m}{m + \rho\Delta} v[n-1] = \frac{\Delta}{m + \rho\Delta} f[n]$$
$$\frac{dv(n\Delta)}{dt} = \frac{v(n\Delta) - v((n-1)\Delta)}{\Delta}$$

Differential Equations (Continuous Time Models)

• A **differential equation** is a mathematical equation that relates some function with its derivatives.

ODE (ORDINARY DIFFERENTIAL EQUATION):

An equation contains only ordinary derivates of one or more dependent variables of a single independent variable. For Example,

 $dy/dx + 5y = e^x$, (dx/dt) + (dy/dt) = 2x + y

PDE (PARTIAL DIFFERENTIAL EQUATION):

An equation contains partial derivates of one or more dependent variables of two or more independent variables. For Example,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} = 2\frac{\partial u}{\partial t} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$S(t) = \frac{t^2}{2} \frac{d^2s}{dt^2} + t \frac{ds}{dt} + s_0$$

Difference Equations (Discrete-Time Models)

- The finite-difference methods are numerical methods for solving differential equations by approximating them with difference equations, in which finite differences approximate the derivatives.
- The finite element methods are numerical techniques for finding approximate solutions to boundary value problems for partial differential equations.

Static and Dynamic Models

STATIC MODEL A static (or steady-state) model calculates the system in equilibrium, and thus is time-invariant. A static model cannot be changed, and one cannot enter edit mode when static model is open for detail view.

DYNAMIC MODEL A dynamic model accounts for timedependent changes in the state of the system. Dynamic models are typically represented by differential equations.

Static Models

- A system is in a steady state if the variables which define the behavior of the system or the process are unchanging in time.
- In continuous time, this means that for those properties *p* of the system, the partial derivative with respect to time is zero.

$$\frac{\partial p}{\partial t} = 0$$

• In discrete time, it means that the first difference of each property is zero.

$$p_{t+1} - p_t = 0$$
 for all t

Dynamic Models

- A **dynamic model** represents the behaviour of a system over time.
- It is used where the system's behaviour is best described as a set of states that occur in a sequence of time.
- The components of the **dynamic model** are: **States**.

Deterministic and Stochastic Models

- In deterministic models, the output of the model is fully determined by the parameter values and the initial conditions.
- Stochastic models possess some inherent randomness. The same set of parameter values and initial conditions will lead to an ensemble of different outputs.

Deterministic Models

- A deterministic system is a system in which no randomness is involved in the development of future states of the system.
- A deterministic model will always produce the same output from a given starting condition or initial state.

Finite State MachineMarkov Chain(Discrete Deterministic Model)(Discrete Stochastic Model)

Stochastic Process

- A stochastic process is a random process evolving with time.
- The evolution of the stochastic system is represented by a set of random variables.

Probability Distributions

• A probability distribution is used to describe the potential outcome of a random variable.

 $\omega \sim P(\Theta)$?

Stochastic simulation

 A stochastic simulation is a simulation that traces the evolution of random variables that can change stochastically (randomly) with certain probabilities.

Simulation Full Models

