201110

Regression and Correlation

Assoc.Prof Phisanu Chiawkhun Statistics department Faculty of Science Chiangmai University

Introduction

- This chapter will discuss the methods of displaying and describing the relationship between two quantitative variables.
- The data used to study the relationship between two variables are bivariate data

The Bivariate data

- The bivariate data obtained by measuring both variables on the same individual unit. (X,Y)
For example :
The data of midterm score (X) and final score for a sample of students (Y).
These data will help us study the association between two variables.

What do we study in this unit ?

${ }^{\bullet}$. We study the linear regression model, which is a method for developing and equation of a line that predicts the value of one quantitative variable from another quantitative variable.

- 2. We also study the correlation which measures the strength and direction of the linear relationship between two quantitative variables.

The linear regression model.

- When we construct the regression model, we use the bivariate data that we obtained by definition :
The response or dependent variable is the variable that we want to predict denoted by "Y" and the independent variable denoted by "X"

The linear regression model.

- The data that we collected in term of bivariate data (X,Y) .
- We construct the scatter plot to show the relationship between two quantitative variables.
X variable are marked on the horizontal axis. Y variable are marked on the vertical axis.

The linear regression model.

Linear regression equation

- The method we will use for finding the regression line is called least squares regression the resulting is call the least squares regression equation

$$
y=A+B x+\varepsilon
$$

Where y is response or dependent variable x is response or dependent variable
B is slope of the line or regression coefficient
A is y-intercept
ε is random errors

- The slope (b) is amount of increase (or decrease) in Y for every 1 -unit increase in X .
- Y -intercept is the value of Y when X is set equal to zero.
- We will construct the sample regression equation by

$$
\hat{y}=a+b x
$$

Calculating Linear regression equation

- We can calculate the linear regression equation by using the least squares method. The result expressions for a and b are given as

$$
\begin{aligned}
& b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}} \\
& b=\frac{n \sum x y-\left(\sum x\right)\left(\sum(y)\right.}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
& b=\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n \bar{x}^{2}} \\
& a=\bar{y}-b \bar{x}
\end{aligned}
$$

Example 1

- A small set of data with $n=5$ observations on x is the midterm exam score and y is the final exam score, has been in the table shown below

X: midterm exam score	Y : final exam score
8	9
10	13
12	14
14	15
16	19

Construct the scatter plot and estimate the regression equation.

Solution

- For computing the a and b. we calculate :

$$
\begin{gathered}
\sum x=60 \quad \sum y=70 \quad \sum x y=884 \\
\sum x^{2}=760 \quad \sum y^{2}=1,032 \quad \bar{x}=12 \quad \bar{y}=14 \\
b=\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n \bar{x}^{2}} \\
b=\frac{884-5(12)(14)}{760-5(12)^{2}}=\frac{44}{40}=1.1 \\
a=\bar{y}-b \bar{x}, \quad a=14-(1.1) 12=0.8
\end{gathered}
$$

- The regression equation is ,

$$
\hat{y}=0.8+1.1 x
$$

- $\mathrm{b}=1.1$ means that if X (midterm score) increase 1 unit y (final score) will increase 1.1 units
- $a=0.8$ means that if $x=0 \quad y$ is $o .8$
- If $X=10$ we can estimate the value of Y by
- $\mathrm{Y}^{\wedge}=0.8+1.1(1 \mathrm{o})=11.8$

