201110 Chapter 3

Correlation

Assoc.Prof Phisanu Chiawkhun Statistics department Faculty of Science Chiangmai University

What do we study in this unit ?

• 1. We also study the <u>correlation</u> which measures the strength and direction of the linear relationship between two quantitative variables.

Introduction

- This chapter will discuss the methods of displaying and describing the <u>relationship between two quantitative</u> <u>variables.</u>
- The data used to study the relationship between two variables are <u>bivariate</u> <u>data</u>

The Bivariate data

• The bivariate data obtained by measuring both variables on the same individual unit. (X,Y)

For example :

The data of midterm score (X) and final score for a sample of students (Y).

These data will help us study the association between two variables.

Correlation Coefficient

- In this section , we turn to a numerical measure of the strength of the linear relationship ,called the <u>sample correlation</u> <u>coefficient , denoted by</u> r
- Definition

The sample correlation coefficient r measures the strength of the linear relationship between two quantitative variable .

Correlation Coefficient

<u>The correlation coefficient describes the</u> <u>direction of linear association and indicates</u> <u>how closely the point in a scatter plot are to</u> <u>the least square regression line</u>

Correlation Coefficient

- In this section , we turn to a numerical measure of the strength of the linear relationship ,called the <u>sample correlation</u> <u>coefficient , denoted by</u> r
- Definition

The sample correlation coefficient r measures the strength of the linear relationship between two quantitative variable .

Some of features of a Correlation Coefficient

- 1. Range : $-1 \le r \le 1$ 2. Sign : The sign of the correlation coefficient indicates the direction of association <u>negative or positive</u>
- 3. Magnitude : The magnitude of the correlation coefficient indicates the strength of the linear association . If the data follow a straight line ,r=1 or r = -1 indicating a perfect linear association if r = 0 there is no linear association

How to Calculate r

• We can calculate the correlation coefficient by

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

$$r = \frac{n\sum xy - (\sum x)(\sum (y))}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

$$r = \frac{\sum xy - n\overline{xy}}{\sqrt{\left[\sum x^2 - n\overline{x}^2\right]\left[\sum y^2 - n\overline{y}^2\right]}}$$

Example 1

• Consider the heights (x) and weights (Y) of 10 basketball players. Find the correlation coefficient.

player	Weight , X (kg)	Height, Y (cm)
1	73	185
2	71	175
3	75	200
4	72	210
5	72	190
6	75	195
7	67	150
8	69	170
9	71	180
10	69	175

Solution

• For computing the correlation coefficient we calculate :

$$\sum x = 714 \quad \sum y = 1,830 \quad \sum xy = 130,990$$

$$\sum x^{2} = 51,040 \quad \sum y^{2} = 337,500 \quad \overline{x} = 71.4 \quad \overline{y} = 183$$

$$r = \frac{\sum xy - n\overline{x}\overline{y}}{\sqrt{\left[\sum x^{2} - n\overline{x}^{2}\right]\left[\sum y^{2} - n\overline{y}^{2}\right]}}$$

$$r = \frac{130,990 - 10(71.4)(183)}{\sqrt{[51,040 - 10(71.4)^2][337,500 - 10(183)^2]}} = 0.8261$$

Coefficient of determination(r2)

The coefficient of determination is the proportion of the variation in dependent variable this is described by the independent variable

we have

$$r = 0.8261$$

so that
$$r^2 = 0.6824$$

The independent variable (x) can describe the variation in dependent variable (y) = 68.24%