Closest Pair Problem : Brute Force

® Problem: Given a set of points, find the closest pair (measured

in Euclidean distance) 0 0

* Brute-force method: &n?). . N

BruteForceClosestPoints(P) // Pis list of points
amin = «
fori=1ton-1do
fork=i+1tondo
d= sqrt ((x—x;)* + (V,—¥)9)
if d< dminthen
admin= d, pos1 =1, pos2 « k

return pos1, pos2

Closest Pair Problem : Brute Force

¢ Astraightforward approach usually directly based on problem
statement and definitions

® Motto : Just do it!
® Crude but often effective

® Examples already encountered:
® Selection sort
® Multiplying two n by n matrices

®* Computing &" (a > 0, n a nonnegative integer) by multiplying a together n
times

Closest Pair Problem : Brute Force

Pros and Cons of Brute Force

*Strengths:
® Simplicity and Wide applicability

® Yields reasonable algorithms for some important problems and

standard algorithms for simple computational tasks

*Weaknesses:
® Rarely produces efficient algorithms
® Some brute force algorithms are in feasibly slow

® Not as creative as some other design techniques

Closest Pair Problem : D&C method

® Divide-and-conguer method:
* \Want to be lower than O(n?),
—> expect O(n log n).
® Need T(n)=2T(n/2)+0O(n).
®* How?
® Divide :into 2 subsets (according to x-coordinate)
® Conquer: recursively on each half.

® Combine: select closer pair of the above.

One point from the left half and the other from
the right may have closer distance.

Closest Pair of Points
® Algorithm.

¢ Divide: draw vertical line L so that roughly 2n points on each side.

Closest Pair of Points

® Algorithm.
® Divide: draw vertical line L so that roughly “2n points on each side.

¢ Conqguer: find closest pair in each side recursively.

Closest Pair of Points

® Algorithm.
® Divide: draw vertical line L so that roughly “2n points on each side.
* Conquer: find closest pair in each side recursively. seems like 6(r2)

¢ Combine: find closest pair with one point in each side.

® Return best of 3 solutions.

Closest Pair of Points

® Find closest pair with one point in each side, assuming that distance < 0.

0 =min(12, 21)

Closest Pair of Points

® Find closest pair with one point in each side, assuming that distance < 0.

® Observation: only need to consider points within O of line L.

0 =min(12, 21)

Closest Pair of Points

® Find closest pair with one point in each side, assuming that distance < 0.
® Observation: only need to consider points within O of line L.

® Sort points in 25—strip by their y coordinate.

0 =min(12, 21)

10

Closest Pair of Points

® Find closest pair with one point in each side, assuming that distance < 0.
® Observation: only need to consider points within O of line L.

® Sort points in 25-strip by their y coordinate.

® Only check distances of those within 11 positions in sorted list!

0 =min(12, 21)

11

Closest Pair of Points

* Def. Lets, be the point in the 26—strip, with
the i smallest y-coordinate.

® Claim. If|i—j| 2 12, then the distance between
s, and S, is at least O.

* Pf 2 ro

® No two points lie in same 1/28—by—1/28 box.

® Two points at least 2 rows apart
have distance = 2(120). ®

® Fact. Still true if we replace 12 with 7.

D—j
3]
WS
o 30
. 8
= s
o o

%0

%0

%20

Closest Pair Algorithm

Closest-Pair(p;, .., P,) {
Compute separation line L such that half the points O(n Iog n)
are on one side and half on the other side.

8, = Closest-Pair (left half) 2T(n / 2)
0, = Closest-Pair (right half)
& = min(8,, 9,)

Delete all points further than § from separation line L O(n)
Sort remaining points by y-coordinate. O(n log n)
Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these O(n)

distances is less than 8, update J.

return 9.

Closest Pair of Points: Analysis

® Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(nlog®n)

® Q. Can we achieve O(n log n)?

® A. Yes. Don't sort points in strip from scratch each time.

® Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

® Sort by two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

