Closest Pair Problem : Brute Force

- Problem: Given a set of points, find the closest pair (measured in Euclidean distance)

BruteForceClosestPoints(P) // P is list of points d min $=\infty$ for $\mathrm{i}=1$ to $\mathrm{n}-1$ do for $\mathrm{k}=\mathrm{i}+1$ to n do $d=\operatorname{sqrt}\left(\left(x_{i}-x_{k}\right)^{2}+\left(y_{i}-y_{k}\right)^{2}\right)$ if $d<d$ min then

$$
d \min =d, \operatorname{pos} 1=\mathrm{i}, \operatorname{pos} 2 \leftarrow k
$$

return pos1, pos2

Closest Pair Problem: Brute Force

- A straightforward approach usually directly based on problem statement and definitions
- Motto : Just do it!
- Crude but often effective
- Examples already encountered:
- Selection sort
- Multiplying two n by n matrices
- Computing a^{n} ($a>0$, n a nonnegative integer) by multiplying a together n times

Closest Pair Problem : Brute Force

Pros and Cons of Brute Force

-Strengths:

- Simplicity and Wide applicability
- Yields reasonable algorithms for some important problems and standard algorithms for simple computational tasks
- Weaknesses:
- Rarely produces efficient algorithms
- Some brute force algorithms are in feasibly slow
- Not as creative as some other design techniques

Closest Pair Problem : D\&C method

- Divide-and-conquer method:
- Want to be lower than $O\left(n^{2}\right)$,
\Rightarrow expect $O(n \log n)$.
- Need $T(n)=2 T(n / 2)+O(n)$.
- How?
- Divide : into 2 subsets (according to x-coordinate)
- Conquer: recursively on each half.
- Combine: select closer pair of the above.

One point from the left half and the other from the right may have closer distance.

Closest Pair of Points

- Algorithm.
- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.

Closest Pair of Points

- Algorithm.
- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

- Algorithm.
- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.
- Conquer: find closest pair in each side recursively.
\leftarrow seems like $\Theta\left(n^{2}\right)$
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance $<\delta$.
- Observation: only need to consider points within δ of line L.

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance $<\delta$.
- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance $<\delta$.
- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

- Def. Let s_{i} be the point in the $2 \boldsymbol{\delta}$-strip, with the $\mathrm{i}^{\text {th }}$ smallest y -coordinate.
- Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
- Pf.
- No two points lie in same $1 / 2 \delta$-by- $1 / 2 \boldsymbol{\delta}$ box.
- Two points at least 2 rows apart have distance $\geq 2(1 / 2 \delta)$.
- Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

Closest-Pair (p_{1}, \ldots, p_{n}) \{
Compute separation line L such that half the points $O(n \log n)$ are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair (right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line $\mathrm{L} O(n)$
Sort remaining points by y-coordinate.
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these $O(n)$ distances is less than δ, update δ.
return δ.

Closest Pair of Points: Analysis

- Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=\alpha\left(n \log ^{2} n\right)
$$

- Q. Can we achieve $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?
- A. Yes. Don't sort points in strip from scratch each time.
- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by \times coordinate.
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow T(n)=Q(n \log n)
$$

