
Closest Pair Problem : Brute Force

• Problem: Given a set of points, find the closest pair (measured
in Euclidean distance)

• Brute-force method: (n2).
BruteForceClosestPoints(P) // P is list of points
dmin = ∞
for i= 1 to n-1 do

for k = i +1 to n do
d = sqrt ((xi –xk)2 + (yi –yk)

2)
if d < dmin then

dmin = d, pos1 = i, pos2 ← k
return pos1, pos2

d

1

Closest Pair Problem : Brute Force

• A straightforward approach usually directly based on problem
statement and definitions

• Motto : Just do it!

• Crude but often effective

• Examples already encountered:
• Selection sort
• Multiplying two n by n matrices
• Computing an (a > 0, n a nonnegative integer) by multiplying a together n

times

2

Closest Pair Problem : Brute Force

Pros and Cons of Brute Force

•Strengths:

• Simplicity and Wide applicability

• Yields reasonable algorithms for some important problems and

standard algorithms for simple computational tasks

•Weaknesses:

• Rarely produces efficient algorithms

• Some brute force algorithms are in feasibly slow

• Not as creative as some other design techniques
3

Closest Pair Problem : D&C method

• Divide-and-conquer method:
•Want to be lower than O(n2),

 expect O(n log n).
• Need T(n)=2T(n/2)+O(n).

• How?
• Divide : into 2 subsets (according to x-coordinate)
• Conquer: recursively on each half.
• Combine: select closer pair of the above.

One point from the left half and the other from

the right may have closer distance.

4

Closest Pair of Points
• Algorithm.

• Divide: draw vertical line L so that roughly ½n points on each side.

L

5

Closest Pair of Points
• Algorithm.

• Divide: draw vertical line L so that roughly ½n points on each side.
• Conquer: find closest pair in each side recursively.

12

21

L

6

Closest Pair of Points
• Algorithm.

• Divide: draw vertical line L so that roughly ½n points on each side.
• Conquer: find closest pair in each side recursively.
• Combine: find closest pair with one point in each side.
• Return best of 3 solutions.

12

21
8

L

seems like (n2)

7

Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

8

Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

• Observation: only need to consider points within  of line L.

12

21



L

 = min(12, 21)

9

12

21

1

2

3

4
5

6

7



Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

• Observation: only need to consider points within  of line L.
• Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)

10

12

21

1

2

3

4
5

6

7



Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

• Observation: only need to consider points within  of line L.
• Sort points in 2-strip by their y coordinate.
• Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)

11

Closest Pair of Points
• Def. Let si be the point in the 2-strip, with

the ith smallest y-coordinate.

• Claim. If |i – j|  12, then the distance between
si and sj is at least .

• Pf.
• No two points lie in same ½-by-½ box.
• Two points at least 2 rows apart

have distance  2(½). ▪

• Fact. Still true if we replace 12 with 7. 

27

29
30

31

28

26
25



½

2 rows
½

½

39

i

j

12

Closest Pair Algorithm
Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

1 = Closest-Pair(left half)

2 = Closest-Pair(right half)

 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than , update .

return .

}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

13

Closest Pair of Points: Analysis
• Running time.

• Q. Can we achieve O(n log n)?

• A. Yes. Don't sort points in strip from scratch each time.
• Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.
• Sort by merging two pre-sorted lists.



T(n)  2T n/2   O(n)  T(n)  O(n log n)



T(n)  2T n/2   O(n log n)  T(n)  O(n log2 n)

14

