
Closest Pair Problem : Brute Force

• Problem: Given a set of points, find the closest pair  (measured 
in Euclidean distance)

• Brute-force method: (n2).
BruteForceClosestPoints(P)    // P is list of points
dmin = ∞
for i= 1 to n-1 do

for k = i +1 to n do
d = sqrt ((xi –xk )2 + (yi –yk)

2)
if d < dmin then 

dmin = d, pos1 = i, pos2 ← k
return pos1, pos2

d

1



Closest Pair Problem : Brute Force

• A straightforward approach usually directly based on problem 
statement and definitions

• Motto : Just do it!

• Crude but often effective

• Examples already encountered:
• Selection sort 
• Multiplying two n by n matrices
• Computing an (a > 0, n a nonnegative integer) by multiplying a together  n

times
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Closest Pair Problem : Brute Force

Pros and Cons of Brute Force

•Strengths:

• Simplicity and Wide applicability

• Yields reasonable algorithms for some important problems and 

standard algorithms for simple computational tasks

•Weaknesses:

• Rarely produces efficient algorithms

• Some brute force algorithms are in feasibly slow

• Not as creative as some other design techniques
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Closest Pair Problem : D&C method

• Divide-and-conquer method:
•Want to be lower than O(n2), 

 expect O(n log n).
• Need T(n)=2T(n/2)+O(n).

• How?
• Divide : into 2 subsets (according to x-coordinate) 
• Conquer: recursively on each half.  
• Combine:  select closer pair of the above. 

One point from the left half and the other from 

the right may have closer distance.
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Closest Pair of Points
• Algorithm.

• Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points
• Algorithm.

• Divide:  draw vertical line L so that roughly ½n points on each side.
• Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points
• Algorithm.

• Divide:  draw vertical line L so that roughly ½n points on each side.
• Conquer:  find closest pair in each side recursively.
• Combine:  find closest pair with one point in each side.
• Return best of 3 solutions.

12

21
8

L

seems like (n2) 
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

• Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

• Observation:  only need to consider points within  of line L.
• Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

• Observation:  only need to consider points within  of line L.
• Sort points in 2-strip by their y coordinate.
• Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)
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Closest Pair of Points
• Def.  Let si be the point in the 2-strip, with

the ith smallest y-coordinate.

• Claim.  If |i – j|  12, then the distance between
si and sj is at least .

• Pf.
• No two points lie in same ½-by-½ box.
• Two points at least 2 rows apart

have distance  2(½).   ▪

• Fact.  Still true if we replace 12 with 7. 
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Closest Pair Algorithm
Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

1 = Closest-Pair(left half)

2 = Closest-Pair(right half)

 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than , update .

return .

}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis
• Running time.

• Q.  Can we achieve O(n log n)?

• A.  Yes. Don't sort points in strip from scratch each time.
• Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.
• Sort by merging two pre-sorted lists.

  



T(n)  2T n/2   O(n)  T(n)  O(n log n)

  



T(n)  2T n/2   O(n log n)  T(n)    O(n log2 n)
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