Closest Pair Problem : Brute Force

 Problem: Given a set of points, find the closest pair (measured in Euclidean distance)

• Brute-force method: $\theta(n^2)$.

BruteForceClosestPoints(*P*) // *P* is list of points $dmin = \infty$ for i= 1 to n-1 do for k = i +1 to n do $d = \operatorname{sqrt} ((x_i - x_k)^2 + (y_i - y_k)^2))$ if d < dmin then dmin = d, pos1 = i, pos2 $\leftarrow k$ return *pos*1, pos2 0

0

0

Closest Pair Problem : Brute Force

- A straightforward approach usually directly based on problem statement and definitions
- Motto : Just do it!
- Crude but often effective
- Examples already encountered:
 - Selection sort
 - Multiplying two *n* by *n* matrices
 - Computing aⁿ (a > 0, n a nonnegative integer) by multiplying a together n times

Closest Pair Problem : Brute Force

Pros and Cons of Brute Force

•Strengths:

- Simplicity and Wide applicability
- Yields reasonable algorithms for some important problems and standard algorithms for simple computational tasks

•Weaknesses:

- Rarely produces efficient algorithms
- Some brute force algorithms are in feasibly slow
- Not as creative as some other design techniques

Closest Pair Problem : D&C method

- Divide-and-conquer method:
 - Want to be lower than $O(n^2)$,

 \Rightarrow expect $O(n \log n)$.

- Need T(n)=2T(n/2)+O(n).
- How?
 - Divide : into 2 subsets (according to x-coordinate)
 - Conquer: recursively on each half.
 - Combine: select closer pair of the above.

One point from the left half and the other from the right may have closer distance.

- Algorithm.
 - Divide: draw vertical line L so that roughly 1/2n points on each side.

- Algorithm.
 - Divide: draw vertical line L so that roughly 1/2n points on each side.
 - Conquer: find closest pair in each side recursively.

- Algorithm.
 - Divide: draw vertical line L so that roughly 1/2n points on each side.
 - Conquer: find closest pair in each side recursively. \leftarrow seems like $\Theta(n^2)$
 - Combine: find closest pair with one point in each side.
 - Return best of 3 solutions.

7

• Find closest pair with one point in each side, assuming that distance $< \delta$.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - Observation: only need to consider points within δ of line L.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - Observation: only need to consider points within δ of line L.
 - Sort points in 2 δ -strip by their y coordinate.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - Observation: only need to consider points within δ of line L.
 - Sort points in 2 δ -strip by their y coordinate.
 - Only check distances of those within 11 positions in sorted list!

δ

• Def. Let s_i be the point in the 2 δ -strip, with the i^{th} smallest y-coordinate.

- Claim. If $|i j| \ge 12$, then the distance between s_i and s_i is at least δ .
- Pf.
 - No two points lie in same ${}^{\prime\!\!/_2}\!\delta$ -by- ${}^{\prime\!\!/_2}\!\delta$ box.
 - Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

• Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
Compute separation line L such that half the points O(n | Og n)
are on one side and half on the other side.
```

 $\begin{array}{ll} \delta_1 = \text{Closest-Pair(left half)} & 2T(n/2) \\ \delta_2 = \text{Closest-Pair(right half)} \\ \delta = \min(\delta_1, \delta_2) \end{array}$

Delete all points further than δ from separation line L O(n) Sort remaining points by y-coordinate. O(n log n)

Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these O(n)distances is less than δ , update δ .

```
return \delta.
```

}

Closest Pair of Points: Analysis

• Running time.

 $T(n) \le 2T(n/2) + O(n \log n) \implies T(n) = O(n \log^2 n)$

• Q. Can we achieve O(n log n)?

- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

 $T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$